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An accurate Monte Carlo simulation of the deficit of primary cosmic rays in the direction of the Moon

has been developed to interpret the observations reported in the TeV energy region until now. Primary

particles are propagated through the geomagnetic field in the Earth–Moon system. The algorithm is

described and the contributions of the detector resolution and of the geomagnetic field are

disentangled.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Since the galactic cosmic rays are hampered by the Moon, a
deficit of cosmic rays in its direction is expected (the so-called
‘‘Moon shadow’’). The Moon shadow is an important tool to
calibrate the performance of an air shower array. In fact, the size
of the deficit allows a measurement of the angular resolution and
the position of the deficit allows the evaluation of the absolute
pointing accuracy of the detector.

In addition, the Earth–Moon system acts as a magnetic
spectrometer deflecting the charged cosmic rays by an angle
inversely proportional to their energy. The observation of such a
displacement provides a direct check of the relation between
shower size and primary energy, thus calibrating the detector.

This effect allows, in principle, the search of antiparticles in the
opposite direction of the observed Moon shadow being paths of
primary antiprotons deflected in an opposite sense in their way to
the Earth.

A detailed Monte Carlo simulation of cosmic ray propagation
in the Earth–Moon system is mandatory to understand the Moon
shadow phenomenology and to compare the observed westward
displacement with the expectations in order to disentangle the
geomagnetic effect from some possible experimental biases.
2. Monte Carlo simulation

2.1. Simulation strategy

When the emission of photons by a given gamma-ray source
has to be simulated, a classical approach can be followed: once its
energy spectrum is known, it is enough to decide for how long the
ll rights reserved.
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source emission has to be reproduced to calculate the number of
expected events which have to be sampled. Of course, if the
response of an Earth-based array has to be simulated, for each one
of these primary particles also induced shower and the detector
response have to be calculated. The easiest way to do that is to
shoot up the particles from the detector1 to the source. This trick
allows to concentrate the efforts of the simulation only on the
showers which effectively construct the signal.

Nonetheless, this method cannot be used for the Moon shadow
as it is, because of two main reasons.
1.
 The Moon shadow is not a signal, but a ‘‘lack’’ in the
background.
2.
 The effect is provoked by charged particles and not by photons.
This implies that we must take into account the effect of the
electro-magnetic fields on their trajectories.
The first argument is the more relevant one. In fact, if we
wanted to remain faithful to the approach of simulating only the
particles which reach the detector, we should compute the
showers of the background surrounding the Moon and then take
off the ones coming exactly from within Moon. In such terms, the
simulation is likely unfeasible, at least for low energy threshold
experiments. To be precise, if the detector energy threshold is a
few hundreds of GeV, even by considering a square sky window
surrounding the Moon not so large (e.g. 101), too many showers
should have to be simulated to reproduce even just one year of
data taking.

It is evident that the Moon shadow requires a different
strategy of simulation. It is better to treat the Moon like a
standard source and then reverse the amplitude of the signal. In
the end, both the gamma-source case and the Moon shadow case
1 Actually, from a suitably-chosen area around it.
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Fig. 1. Deviation induced by the geomagnetic field on protons and He nuclei. Each

point refers to a simulated shower. Both the arrival direction and the date of the

propagation are randomly sampled,respectively, from an isotropic distribution

within the sky and from a uniform distribution over 2008. The analytical trends

obtained from Eq. (1) are also shown.
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Fig. 2. Residual displacement with respect to the analytical expectation. The

deviation is calculated by applying the T-IGRF model (see text). The color scale

represents the number of showers laying on the single pixel. (For interpretation of

the references to color in this figure legend, the reader is referred to the web

version of this article.)

2 No deviation is expected along the North–South one.
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reduce to a perturbation of the cosmic-rays background. The only
difference is the sign of the perturbation.

Because of their electric charge the cosmic rays do not proceed
straight from the Moon to the Earth, but their trajectories are bent
by the geomagnetic field. Since this effect plays a crucial role in
the final result of the physics analysis, it must not be under-
estimated during the simulation. Especially for those particle
which have low energy, the bending effect is very strong and a
realistic prediction is possible only if the simulation accounts
correctly for the intensity and the direction of the geomagnetic
field. What is more, notice that when the particles are sent back to
the Moon from the detector, the sign of their charge must be
reversed to properly reproduce the direction of the deviation.

2.2. The simulation of an ideal detector

The air showers development in the atmosphere has been
generated with the CORSIKA v. 6.500 code including the QGSJET-
II.03 hadronic interaction model [1]. Cosmic ray spectra have been
simulated in the energy range from 30 GeV to 1 PeV following the
relative normalization given in Ref. [2], resulting from a global fit
of main experimental data. About 108 showers have been sampled
in the zenith angle interval 0–601. The secondary electro-
magnetic component has been propagated down to a cut-off
energy of 1 MeV.

At present, the only experiment able to observe the Moon
shadow with high statistical significance at an energy threshold
well below 1 TeV is ARGO-YBJ [3]. Therefore, we simulated, via a
GEANT4-based code [4], an ideal detector placed in YangBaJing
(4300 m a.s.l.) having geometrical features similar to ARGO-YBJ
and a duty-cycle of 90%. The shower core positions have been
randomly sampled in an energy-dependent area large up to
103
�103 m2, centered on the detector. We analyzed all events

with more than 20 charged particles over the whole detector.

2.3. The geomagnetic model

It has been already noticed that if a primary cosmic ray (energy
E, charge Z) traversing the geomagnetic field is observed by a
detector placed in YangBaJing, its trajectory shows a deviation
along the East–West direction [5]2 which in first approximation
can be written as

DWC�1:583 Z

E½TeV�
: ð1Þ

The sign is set according to the usual way to represent the East–
West projection of the Moon maps (see Fig. 3). Eq. (1) can be
easily derived by assuming that the geomagnetic field is provoked
by a pure dipole laying in the centre of the Earth (see Appendix).
Nonetheless this approximation, which is derived for nearly
vertical primaries, is not enough when the primaries energy is
below few TeV.

To perform a numerical estimate of the bending effect, it is
necessary to adopt a model of the magnetic field in the Earth–
Moon system. The roughest one is the so-called Virtual Dipole
Model (VDM), whose name is self-explaining. A better choice is
the Tsyganenko-IGRF model (T-IGRF hereafter) [6], which
accounts for both internal and external magnetospheric sources.
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We compared the effect on the particle trajectories of VDM and
T-IGRF, in both cases finding non-negligible differences with
respect to the �1.581 Z/E(TeV) formula. Among the two models
themselves, we observed discrepancies up to the � 15% level
(4�73) for sub-TeV primary energies, mainly due to the field
intensity near the Earth surface. Since the T-IGRF model accounts
for more factors, we refer to it hereafter. In Fig. 1, you can
appreciate the analytical trend (Eq. (1)) together with the actual
East–West displacement calculated applying the T-IGRF model for
protons and He nuclei. The analytical approach clearly
underestimates the East–West deviation.

Fig. 2 shows the differences of the T-IGRF-induced deviation
with respect to the leading term 1.581Z/E(TeV). The upper
(lower) panel contains such a residual deviation along the
East–West (North–South) direction as a function of the primary
energy. Although there are no effects for energies E410 TeV,
below few TeV the residual displacement can reach 11. Notice that
unlike the analytical approach would suggest, the North–South
deviation of the single primary is non-null, being zero only on
average.
2.4. Moon shadow simulation

By following the procedure described before, we can obtain the
Moon shadow maps represented in Fig. 3. There can be
appreciated the displacement induced by the geomagnetic field.
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Fig. 3. Folding different contributions to the Moon signal. Upper part of the figure: Moo

magnetic field is switched on. Lower part: only the detector is switched on; both the ma

coordinates (declination VS corrected right ascension). Only the showers triggering the

(For interpretation of the references to color in this figure legend, the reader is referre
The long tail of the left part of the up-right map is made by the
lowest energy particles (below 1 TeV) which are more deviated.
Concerning the bottom-left map, the detector by itself provides
the smearing of the signal, leaving intact the circular symmetry,
as expected.

It is possible to study the effects of the finite angular resolution
of the detector and of the geomagnetic field separately.

As already noticed, if we consider the magnetic deviation but
not the detector, the circular symmetry of the signal is broken
only along the East–West direction (see Fig. 3, top-right map).
That make us confident that only the smearing due to the angular
resolution affects the signal along the north–south direction, thus
allowing its determination. Actually, we stress that what we
determine by considering the spread of the signal along the
North–South direction, cannot be properly named angular
resolution, because the Moon is not a point-like source and its
own finite angular width (half a degree) contributes to the spread.
The superposition of the two effects can be easily visualized in
case of Gaussian Point Spread Function (PSF)

RMS¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

0:133

s

� �2
s

where the root mean square of the signal RMS is related to the
variance s2 of the PSF. The contribution of the Moon size to the
RMS is (not) dominant when s is low (high), i.e. at high (low)
particle multiplicities. Just to be explicit, the difference between
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d to the web version of this article.)
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RMS and s is 20% if s¼ 0:23, o5% if s40:43, and only 1.7% if
s¼ 0:73.

Finally, it is worth to invert the switching order of the detector
effect and of the geomagnetic field. In Fig. 4, the effect of the
angular resolution on the East–West projection of the Moon is
shown. Because of the signal asymmetry induced by the magnetic
field, such an effect provides not only the smearing, but also a
further displacement of the signal peak. The West tail of the
shifted signal, in fact, has a larger weight than the sharp East one
and tends to pull the signal in its direction.
(α-αm) cos (δm)
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Fig. 4. Effect of the PSF along the east–west direction. The continuous black line

represents the Moon shadow deformed by the geomagnetic field as it would

appear to an ideal detector. By considering also the effect of the detector PSF, the

displacement of the signal peak is enhanced, moreover the well-known smearing

effect. The figures represent only protons.
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Fig. 5. Expected displacement of the Moon shadow in the East–West direction as a

function of multiplicity. The upper scale refers to the median energy of rigidity

(TeV/Z) in each multiplicity bin (shown by the horizontal errors).
In Fig. 5, the total eastward displacement is plot vs the number
of detected particles.
3. Conclusions

We reproduced the Moon shadow effect as observed by an
ideal detector located at high altitude. Much attention has been
devoted to the simulation of the geomagnetic field bending the
particle trajectories. We have been able to disentangle the
contribution to the final signal of the geomagnetic field and of
the detector PSF, respectively. We quantified the contribution of
the finite Moon disc to the angular resolution estimation. For a
comparison with the data collected by the ARGO-YBJ experiment,
see Ref. [3].
Appendix

Here is shown how to obtain the formula (1). Since only the
magnetic field is supposed to act upon the particles trajectories,
the Lorentz equation can be written as

xðtÞ ¼ x0þv0tþ
Zec2

E

Z t

0
dt
Z t

0
da dx

da
� Bðx,aÞ ð2Þ

where x(t) is the particle position at the time t; x0 and v0 are the
initial position and velocity of the particle; Ze and E are its charge
and its (constant) energy; B(x,t) is the magnetic field, which in
principle can vary both with respect to the position and to the
time.

If it is possible to write down an explicit functional form for
B(x, t), an attempt to solve Eq. (2) can be made. On the contrary,
especially when the variation with the time cannot be easily
summarized with an analytical formula, a numerical solution is
unavoidable.3

Eq. (2) explicitly shows the perturbation induced by the
magnetic field on the straight trajectory (x(t) ¼ x0+v0t). This
suggests an iterative method to determine the solution, which can
be expressed as the series:

xðtÞ ¼ xOðB0ÞðtÞþxOðB1ÞðtÞþ � � �

where xOðB0ÞðtÞ ¼ x0þv0t is the unperturbed (straight) trajectory
and for the higher orders holds

DxOðBiþ 1ÞðtÞ ¼
Zec2

E

Z t

0
dt
Z t

0
da

dxOðBiÞ

da � BðxOðBiÞ,aÞ, i¼ 0,1, . . .

where DxOðBiþ 1ÞðtÞ ¼ xOðBiþ 1ÞðtÞ�ðx0þv0tÞ is the displacement from
the unperturbed trajectory at the time t. Being content with the
first-order approximation, it can be obtained

DxðtÞC
Zec2

E
v0 �

Z t

0
dt
Z t

0
daBðx0þv0a,aÞ

or

DxðtÞC
Z

E
v0 � IBðt;x0,v0Þ ð3Þ

where IBðt;x0,v0Þ is the integral of the magnetic field along the
straight trajectory, whose value depends only on the time of the
motion (t) and on its initial conditions (x0 and v0).

Since the phenomenon studied concerns ultra-relativistic
particles and fixing for a moment the initial position and the
3 I.e. what has been done in the main part of this paper.
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final time, Eq. (3) becomes

DxC
Z

E
v̂0 � IBðv̂0Þ

In short, on a first approximation the displacement depends only
on the ratio charge-to-energy of the primary and on the initial
direction of its ultra-relativistic motion (versor v̂0).4

Let us consider only the lowest order of the geomagnetic field
multipoles-expansion, i.e. the dipole term

BðxÞ ¼
3ðb � xÞx�x2b

x5
4 The second dependence is not trivial at all. Because of the difference in the

field-integrals, two identical particles having the same energy and starting

together from the Moon can drift from the straight trajectory differently according

to their different initial directions.
where b has intensity b� 8:1� 1027 T m3 and the south magnetic
pole is supposed to have coordinates 78.31 South, 111.01 East. By
setting v̂0Jx0 (vertical direction approximation) and integrating
from YangBaJing to a distance � 60 Earth’s radii, Eq. (1) is
immediately obtained.
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