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Abstract

The next-generation of all-sky EAS detector will be able to lower the threshold below the TeV region and will

provide a huge data flux, due to the large detecting area and the high duty cycle. In this paper we discuss in detail the

possibility of using this detector in order to study the cosmic ray spectrum in the TeV region. The peculiarities of this

class of next-generation detectors will make it possible to study the energy profile in the region where direct mea-

surements are available with a large statistical significance. In such a way the measurement obtained by an indirect

technique can be fully overlapped with direct measurement data, in order not only to study the cosmic ray spectrum but

also to investigate the reliability of the full Monte Carlo simulation process. The sensitivity of such a measurement is

also discussed and the data taking time required for a significative measurement is estimated. A standard chi-square fit

and a Bayesian unfolding procedure are applied in order to obtain a measurement of the spectral index of the incoming

primaries.
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1. Introduction

The study of the properties of cosmic rays is

universally recognized as an intriguing problem, in

particular concerning their origin and the energetic

behavior in the region of the ‘‘knee’’. The spec-

trum of the cosmic rays spans an huge interval up
to 1020 GeV or more [1,2]. Many experimental
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efforts were devoted to studying the properties of

cosmic rays. The observation techniques can be

grouped into two broad classes: direct and indirect

measurements. Direct measurements can access

only the low-energy region, up to few 100 TeV,

because of the limited dimensions and the short

exposure time of the detector. The indirect tech-
niques can investigate higher and higher energies,

up to 1020 eV, but they need a Monte Carlo sim-

ulation in order to unfold the relevant informa-

tion from the measured data. Actually, indirect

measurements in the region of the TeV seem

not to agree completely with the data collected

by space-based experiments [3], and a complete
ed.
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understanding of this topic can be obtained only

by extending the indirect measurements in the low

energy region covered by balloons and satellite

detectors [4]. The scientific relevance for this anal-

ysis is the possibility of a better understanding of

this disagreement, in order to investigate its origin
and to check the consistency of the simulation

model through which the indirect data are un-

folded. The next generation of all-sky EAS detec-

tors [5,6], with low energy threshold and high duty

cycle, will be able to collect a lot of data and to

fully overlap their measurement to a wide region

covered by direct measurements. In the following

sections of this paper the main characteristics of a
general detector will be described briefly. The

method of analysis will then be discussed with

particular attention to the physics and computa-

tional tools required to reach the final result. Later

the Monte Carlo data sample will be briefly de-

scribed and finally, in the last two sections, the

sensitivity of the detector will be evaluated and

two different techniques to unfold the experimental
data will be discussed.
2. An ideal detector

The detector we have in mind is a next gener-

ation Extensive Air Shower apparatus [7–9], with

an high duty cycle and a full coverage. This family
of detectors, especially devoted to study gamma

ray sources, is able to furnish the electronic image

of each event. We refer, as discussed in a previous

paper [10], to a pixel-like detector, with each active

element (scintillator, streamer tubes, RPC, and so

on) of the order 50 · 50 cm2. We have considered

in our computation a continuous square made of

20,000 logical pixels (corresponding to about
70 · 70 m2) and with a dead space of the order of

5%. We suppose that the time resolution of the

single detector is of the order of 1 ns, which cor-

responds, for an apparatus of these dimensions, to

an angular resolution better than half degree. A

majority trigger has been chosen as the trigger of

this detector. As we stated before, these require-

ments fit very well with the conceptual design of a
new generation shower array detector [7]; how-

ever, the results can be modified or scaled over the
more realistic structure of existing [6] or planned

detectors [11,12].
3. Fundamental relations

As is well known, each shower is dominated by

fluctuations, mainly due to the fluctuations in the

point of the first interaction and on each following

interaction. For this reason, the energy distribu-

tion of the incoming particles cannot be obtained

event by event, but must be evaluated by means of

an unfolding procedure. The observables quantity

in each pixel-like detector is MðKÞ, which repre-
sents the number of events with a given number K
of fired-pixels, collected in a unit period DT ¼ 1 s

and accepted within a solid angle X. The number

of primary cosmic rays can be expressed in the

usual way as a power law:

dNðEÞ
dE

¼ N0E�c: ð1Þ

The number of detected event is given by an

integral of the previous equation. The integration

has to be performed on the energy spectrum of the

primary particles and on the overall acceptance of

the detector:

MðKÞ ¼
Z E2

E1

Z
X
AeffðE;K;X0ÞN0E�cdX0 dE; ð2Þ

where AeffðE;K;XÞ is the effective area of the

detector for a given energy E of the primary par-

ticle and for a well defined event with K fired-pixels
and detected around the solid angle X. The

dependency of the effective area Aeff on the solid

angle X can be hidden by considering the mean

value within the observation solid angle X:

AeffðE;KÞ ¼
1

X

Z
X
AeffðE;K;X0ÞdX0: ð3Þ

This equation makes it possible to express the
effective area in a compact way, taking into ac-

count all the geometrical dependencies. Inserting it

in Eq. 2 we obtain:

MðKÞ ¼ X
Z E2

E1

AeffðE;KÞN0E�cdE; ð4Þ
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this equation represents the connection between

the observables quantity MðKÞ and the value to be

measured, N0 and c.
4. The method

Looking at Eq. 4, the left side of the equation is

the measured quantity, related to good events se-

lected requiring a set of fiducial cuts, for example:

zenith angle less than 30�, reconstructed core po-

sition within a fiducial area in the detector, good

chi-square value on the angular reconstruction,
minimum number of fired-pixel required to accept

an event, and so on. The right side of this equation

is a convolution of known and unknown quantities:

(i) the AeffðE;KÞ, which can be obtained from a

Monte Carlo simulation;

(ii) the two values N0 and c which are the relevant

quantities to be extracted from data.

The method of analysis requires a Monte Carlo

simulation to compute the AeffðE;KÞ and a mathe-

matical procedure in order to obtain the two values

N0 and c. The Monte Carlo simulation must be

structured around a standard procedure: a shower

code generator and a simulation of the interaction

of the particles with the detector. An analysis pro-
gram will then be used in order to reconstruct the

relevant parameters from the simulated data. The

Monte Carlo generation will be described in detail

in the following paragraph. One half of the Monte

Carlo data sample will be used to compute the

effective area AeffðE;KÞ, while the other half will be
used to test the sensitivity of the full analysis chain,

by back-obtaining the value of the index c and the
absolute normalization N0 used to simulate the

events. Two different mathematical procedures will

be discussed to deal with the second point:

(i) a classical fitting procedure, in which N0 and c
are the two quantities to be obtained by fitting

the experimental MðKÞ by means of the func-

tion described by equation 4;
(ii) a Bayesian unfolding procedure, in order to

obtain the energy distribution of the primary

particle.
Both methods are well-known in literature: the

first one, for example, was used by underground

experiment to obtain the all-nucleon-spectrum

[13], while the second one can count on a lot of

physical applications [14–18].
5. The Monte Carlo data sample

The events were generated by using Corsika [19]

code 5.62 which provides a complete simulation of

the shower development in the earth’s atmosphere.

The electromagnetic part of the shower simulation

is implemented by mean of the EGS4 code [20,21],
while for the hadronic component several options

are available: the Monte Carlo data generated for

this paper were processed by QGSJET code [22]

for the high energy hadronic interactions and by

GHEISHA code [23] for the low energy hadronic

interactions [24]. The data were generated in the

energy range 1–100 TeV with an energy distribu-

tion given by

NðEÞdE ¼ N0E�1 dE ð5Þ
and in a cone of 15� around the vertical direction:

the same geometrical cut will be applied to real

data. The energy spectrum of Eq. (5) has a con-

stant number of events in energy bins of the same

width in a logarithmic scale and reduce the sta-

tistical error in the high-energy bins, avoiding an

accumulation of simulated data in the low-energy

bins. During the analysis, each event will be
weighted with the correct factor in order to obtain

the required energy spectrum at the production.

The number of generated event is reported in Ta-

ble 1, for three different energy intervals. The same

table also shows the weighted number of events

corresponding to three different values of the

spectral index c, chosen around the mean value

2.80 ± 0.4 measured by the JACEE collaboration
[25].

The use of Eq. (5) to simulate a sample of events

makes it possible a reduction of the statistical er-

rors in the higher energy regions: from Table 1 it

follows that in order to obtain the same statistical

errors in the energy range 10–30 TeV with the

ordinary c ¼ 2:80 spectral index, a more than 10

times larger simulation would be required. The



Fig. 1. The core position distribution for different multiplicity (ndig) ranges is shown in the upper panel, for the data sample generated

according with Eq. 5. For the same sample, the distribution of the core position in one coordinate, for events with multiplicity greater

than 30 fired-pixels, is also shown in the lower panel: the left scale refers to the total number of events, while the right scale shows the

fraction of events with the core within a given distance from the detector center.

Table 1

The number of simulated events is shown for different energy ranges

Spectral index Total number 1–3 TeV 3–10 TeV 10–30 TeV 30–100 TeV

c ¼ 1 540,000 128,823± 360 141,177± 375 128,823± 360 141,177±375

c ¼ 2:76 66,603 56,988± 180 8478± 26 990±3 147± 1

c ¼ 2:80 65,128 56,127± 178 7984± 25 890±3 127± 1

c ¼ 2:84 63,714 55,286± 177 7520± 24 799±3 109± 1

The total number of weighted events is also shown, assuming three different values of the spectral index c.
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Fig. 1 (continued)
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image of each shower was then sampled at the

altitude of 600 g cm�2 and was recorded and pre-

pared for the detector simulation. Only protons

were generated, because we wish to focus specifi-
cally on the method of the analysis. A study of the

contribution of He nuclei is discussed in Section

10, where an estimation of the influence of the

presence of Helium nuclei on the evaluation of the

energy spectrum is also given. However, at energy

around the knee and at high altitude, the behavior

of the hadronic shower is roughly independent of

the atomic number, as it was reported by the Asc
[26] collaboration.

The Monte Carlo data were processed through

a code simulating the expected performance of a

detector which meets the general requirements

(high duty cycle, large effective area, high altitude,

fast timing) and the geometrical setup (20,000

pixels covering about 70 · 70 m2) discussed in Sec-

tion 2. The background generated by each logical
pixel has been simulated and added and a simple

majority trigger was applied. The core of the

shower was uniformly distributed on a sampling

area of 600 · 600 m2. In order to check that the

chosen value for the sampling area is large enough

and does not imply a bias for the following eval-

uations, a parallel computation was performed by
using a sampling area of 1000 · 1000 m2. A plot of

core position of the triggered events is shown in

Fig. 1, for different multiplicity ranges. The chosen

value of the sampling area (600 · 600 m2) is large
enough if only multiplicity greater than 30 pixels

are accepted. The effective area computed by

means of this procedure takes into account all the

same geometrical cuts that will be applied to the

experimental data set.
6. Data analysis

6.1. The pixel-multiplicity distribution

The first step in this work is to evaluate whether

the detector described in the previous sections is

able to discriminate between different cosmic ray

spectra. In Fig 2 the differential pixel-multiplicity

distribution is shown for three different values of
the spectral index: c ¼ 2:76, c ¼ 2:80 and c ¼ 2:84.
In order to reduce the effect of fluctuation, it is

possible to refer to the integral pixel-multiplicity

distribution, as it is shown in Fig. 3, for three

different values of the spectral index: c ¼ 2:76,
c ¼ 2:80 and c ¼ 2:84. The distributions shown

in Fig. 3 are clearly separable, and this is a first
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for two different values of the spectral index, c ¼ 2:76 and

c ¼ 2:84 is shown as a function of the pixel-multiplicity itself.

The reported errors are statistical only and are obtained

assuming a data taking period of about 3 h. The two integral

distributions are previously normalized assuming equal to one

the value of the content of the first bin.
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Fig. 3. The integral pixel-multiplicity distribution Mð> P Þ is

shown for three different values of the spectral index, c ¼ 2:76

(dash-dotted line), c ¼ 2:80 (dotted line) and c ¼ 2:84 (dashed

line). The three distributions are normalized to the value of the

first bin of the differential distribution obtained assuming

c ¼ 2:76.
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Fig. 2. The differential pixel-multiplicity distribution MðP Þ is

shown for three different values of the spectral index, c ¼ 2:76

(full line), c ¼ 2:80 (dotted line) and c ¼ 2:84 (dashed line).
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indication of the possibility to use this observable
to perform the required measurement. A more
quantitative estimation can be obtained by looking

at the ratio between different values of the spectral

index: for pixel-multiplicity greater than 1000, the

differences in flux corresponding to the two values

c ¼ 2:76 and c ¼ 2:84 is larger than 20%, as is

shown in Fig. 4. In order to evaluate how much
the differences in flux corresponding to the two

values c ¼ 2:76 and c ¼ 2:84 are affected by noisy

channels in the detector, the same computation

was repeated assuming two different values for the

signal to noise ratio: the standard value of the

order of 2% and an enlarged one of the order of

20%. Also in this second situation, with a very

large value of the noise level, the two curves cor-
responding to c ¼ 2:76 and c ¼ 2:84 are yet dif-

ferent, as shown in Fig. 5.

6.2. The detector sensitivity

By using a standard value for primary cosmic

ray flux given by [25]

/ ’ ð1:1þ0:08
�0:06Þ � 10�1E�2:80	0:04 m�2 s�1 sr�1 TeV�1;

ð6Þ
it is possible to estimate the data-taking period

required to obtain a statistical error of the order of

one tenth of the differences between the integral
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Fig. 5. The same quantity shown in Fig. 3 is now evaluated

assuming a larger value of the noise level, as discussed in the

text. See Fig. 3 for details.
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fluxes corresponding at two values of the spectral

index, c ¼ 2:76 and c ¼ 2:84. This ratio is a func-

tion of the pixel-multiplicity, and the value at 1000

pixels can be chosen as a reference point. We can

estimate the time period required to obtain a

number of data corresponding to the Monte Carlo
sample that we simulated. The integrated effective

area corresponding to a generation area Ag, i.e. the

area over which the MC sample was thrown, can

be obtained as follows integrating Eq. 3:

AðgÞ
eff ðE;KÞ ¼

1

X

Z
X
AeffðE;K;XÞdX

¼ 1

X

Z
X
Ag cosðhÞdX ¼ p sin2 hX

X
Ag; ð7Þ

where hX is the opening angle corresponding to a
total solid angle X around the vertical. So that, if

ng is the number of events hitting the generation

area Ag, the data taking period T can be evaluated

by using Eq. 4 taking into account that MðKÞ is by
definition related to a unit data taking period, and

integrating the primary cosmic ray spectrum above

1 TeV:

T ¼ ðc � 1Þng
p sin2 ðhXÞAgN0

: ð8Þ
Considering events with 1000 fired-pixels, the

total number ng of events can simply be estimated

requiring that the statistical error on the number

of detected events with 1000 fired-pixels is one fifth

of the difference between the expected value for a

spectral index c ¼ 2:80 and c ¼ 2:84

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nc¼2:80 þ Nc¼2:84

p
Nc¼2:80 � Nc¼2:84


 1

5
: ð9Þ

Roughly speaking, this level of precision can be

referred to as a ‘‘5r signal’’, by using a notation

very usual for gamma-ray detectors. By combining

these two equations and taking into account the

flux of Eq. 6 and the data in Table 1 and in Fig. 2,
the required time can be computed:

T5r 
 3 h: ð10Þ

The Kolmogorov–Smirnov test was also ap-

plied to the integral distributions of Fig. 3. If

the probability that the two pixel distribu-

tions obtained with c ¼ 2:80 and c ¼ 2:84 come
from the same parent distribution is required to

be lower than 1%, the data taking must be greater

than about 20 min. A value of the same order

was evaluated comparing the two curves obtained

assuming c ¼ 2:76 and c ¼ 2:80. So that, a next

generation of EAS detector will be able to dis-

criminate between different values of the spectral

index c by collecting data for only few hours. This
result could be scaled to the geometrical dimen-

sions of other realistic detectors, taking into

account that in a first approximation, the sensi-

tivity scales with the root square of the geometrical

area.
7. The computation of the effective area

Another data sample, different from the one

used to obtain the distributions shown in Fig. 2,

was generated in order to compute the effective

area AeffðE;KÞ, i.e. the yield of the event produc-

tion. The value of the effective area AeffðE;KÞ, as
defined in Eq. (3), can be obtained by differenti-

ating Eq. (4):
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AeffðE;KÞ ¼
1

X
1

/ðEÞ
dMðKÞ
dE

¼ 1

X
1

/ðEÞ � nðE;KÞ; ð11Þ

where nðE;KÞ is the number of event, induced by a

primary particle of energy E and detected with a

pixel-multiplicity K. This equation can be written

one time referring to the events ntrðE;KÞ triggered
in the detector with a pixel-multiplicity K and
another time by using the number ng of the gen-

erated events onto the geometrical area Ag: in this

second case, the effective area AeffðE;KÞ can be

analytically computed by integrating Eq. (3) and is

given by Eq. (7). Dropping the unknown value of

the flux between these two equations, the required

result can be expressed in the form:

AeffðE;KÞ ¼
sin2 hX

X
� ntrðE;KÞ

ngðEÞ
� Ag

¼ GðXÞ � ntrðE;KÞ
ngðEÞ

� Ag

GðXÞ ¼ sin2 hX

2ð1� cos hXÞ
;

ð12Þ

where the opening angle hX and the generation

area Ag are defined as in Eq. (7). This algorithms

were implemented in a C++ specific code and the

effective area AeffðE;KÞ was computed.
8. The fit of the spectral index

The spectral index c and the normalization

factor N0 can now be obtained from Eq. 3 by mean

of a standard fitting procedure. We try to estimate

the sensitivity of the pixel-like detector by com-
puting back the spectral index c and the N0 for
Table 2

The table shows the Monte Carlo and reconstructed values for the norm

values of the spectral index c

cMC KMC (m�2 sr�1 TeVc�1) crecons

2.76 1.548 2.763± 0.009

2.80 2.814± 0.009

2.84 2.852± 0.009

The reconstructed values and the related errors are obtained by means

errors arise from the number of Monte Carlo data used in the simula
three different data samples, generated assuming

three different values of the spectral index c. All

the three distributions are normalized at the same

number of event at 1 TeV. The minimization

package Minuit [27] was used for the computation.

The results are shown in Table 2, for the three
different values of the spectral index of the simu-

lated distribution.
9. A Bayesian unfolding

9.1. Relevant relations

The problem of extracting the physics parame-

ter of the cosmic ray flux from the experimental

data is a classical unfolding problem [14] and can

be dealt with by means of Bayesian techniques
[15]. We briefly recall here the contents of the

Bayes theorem in the case of n independent causes

Ci; i ¼ 1; 2; . . . ; nC responsible for the effect ðEffÞj,
j ¼ 1; 2; . . . ; nE. The Bayes theorem states that:

PðCiÞ ¼
PnE

j¼1 PðCijðEffÞjÞ � P ðEffÞjPnC
l¼1

PnE
j¼1 PððEffÞjjClÞ � P ðEffÞj

;

PðCijðEffÞjÞ ¼
P ððEffÞjjCiÞ � P ðCiÞPnC
l¼1 P ððEffÞjjClÞ � P ðClÞ

;

ð13Þ

where P ðCiÞ and P ððEffÞjÞ are the probability dis-

tributions of the causes and of the effects, while

P ðCijðEffÞjÞ and P ððEffÞjjCiÞ are the conditioned

probabilities. In the Bayesian unfolding schema,

the PððEffÞjjCiÞ must be computed by a Monte

Carlo program, the PðEffÞj are the experimental

data and the PðCiÞ are the quantity to be obtained.
The problem is fully resolved by means of an

iterative procedure: the P ðCijðEffÞjÞ are computed

by the second of Eq. (13) by assuming a starting
alization constant K and the spectral index c, for three different

Krecons (m
�2 sr�1 TeVc�1) v2=dof

1.55± 0.09 52/48

1.56± 0.07 57/48

1.56± 0.11 59/48

of a standard fitting procedure: see text for details. The quoted

tion.
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value for the cause distribution P ðCiÞ, then from

the first of Eq. (13) a new value for the P ðCiÞ is

computed. Then the P ðCijðEffÞjÞ can be evaluated

again, and a new and more accurate value of

the P ðCiÞ is obtained. The iterative procedure
ended when further variations on the value of

the P ðCiÞ, computed by means of a chi-square

procedure, are evaluated as negligible. The chi-

square is computed using the values of the un-

folded data corresponding to two contiguous

steps of the unfolding procedure and the errors

on the unfolded data sets. When this chi-square

is lower than a cut chosen by the user the itera-
tive procedure is stopped. During the iterative

procedure, a smoothing algorithm can be applied

to the unfolded data set that will be used in the

following step of the iteration. This smoothing

ensures a more fast convergence of the whole

unfolding procedure and does not affect the final

result because it is not applied at the last step of

the iteration procedure. More details on the sta-
bility of this procedure and to the coupling with a

smoothing procedure can be found in litera-

ture [15]. In our case, the ‘‘cause’’ is the incoming

particle with an energy E, so that the cause dis-

tribution is given by the primary spectrum P ðEÞ,
while the ‘‘effect’’ is an event detected with pixel-

multiplicity K, so that the ‘‘effect’’ distribution is

linked to the MðKÞ discussed above (see Eq. (4)).
Finally, the conditioned probability P ððEffÞjjCiÞ is
linked, except for a normalization factor, to the

effective area AeffðE;KÞ discussed in the previous

sections and computed by mean of the Monte

Carlo code. The general formula must now be

tuned in order to take into account that we are

dealing with fluxes, and not just with numbers.

The relevant quantities concerning the normalized
distributions PðEÞ and P ðKÞ can be coherently

defined as follows:

P ðEÞ ¼ NðEÞR Emax

Emin
NðE0ÞdE0

; ð14Þ

P ðKÞ ¼ MðKÞ
ntottrigger

; ð15Þ

where NðEÞ is the differential energy distribution

of the primary, ntottrigger is the total number of par-
ticles detected in the apparatus and MðKÞ is the

number of events detected with pixel-multiplicity

equal to K. Concerning the P ðKjEÞ, computed by

the Monte Carlo, their value can be expressed

as a function of the effective area, considering
Eq. (11):

PðKjEÞ ¼ ntrðE;KÞ
ntrðEÞ

¼ AeffðE;KÞ
AeffðEÞ

; ð16Þ

where AeffðEÞ is the effective area summed over all

the multiplicity, i.e. the global yield for the detec-

tion of an event generated by a primary particle

with energy E. Now it is possible to apply the
Bayes theorem in order to obtain the required

distribution PðEÞ, by means of a typical iterative

procedure. Concerning the normalization, we can

obtain the flux integrating over the effective area.

If we use the generation area Ag, the flux /ðEÞ,
according to Eq. (11) and referring to a data tak-

ing period T , is given by

/ðEÞ ¼ ng
T

1

X
1

GðXÞAg

� P ðEÞ: ð17Þ

This equation can be used to compute the flux

/ðEÞ by means of the Monte Carlo data, for which

the generation area Ag is known. In the case of real

data, it is better to express the flux /ðEÞ as a

function of experimental observables and of

quantities which parameterize the overall perfor-

mance of the detector, like the effective areas
AeffðE;KÞ and Atot

eff ðEÞ, as follows:

Atot
eff ðEÞ ¼

X
K

AeffðE;KÞ ¼ GðXÞ n
tot
tr

ng
Ag;

/ðEÞ ¼ ntottr

T
1

X
1

Atot
eff

� P ðEÞ:
ð18Þ

This equation completely solves the problems

and makes it possible to obtain, from the experi-

mental data, the energy of the primary particles,
without any assumption, as required in the case of

a standard fitting procedure, on the shape of the

distribution itself.

9.2. The analysis method

The relevant equations, discussed in the previ-

ous section, were implemented in a Fortran code.



Table 4

The values obtained for K and the spectral index c are shown

cMC KMC

(m�2 sr�1 TeVc�1)

crecons Krecons

(m�2 sr�1 TeVc�1)

2.76 1.548 2.74± 0.02 1.53± 0.05

2.80 2.78± 0.03 1.53± 0.05

2.84 2.82± 0.03 1.53± 0.05

The data were obtained with the initial value of the PðEÞ dis-

tributed as a power law and applying a smoothing procedure.

Table 5

The values obtained for K and the spectral index c are shown

cMC KMC

(m�2 sr�1 TeVc�1)

crecons Krecons

(m�2 sr�1 TeVc�1)

2.76 1.548 2.73± 0.02 1.52± 0.05

2.80 2.78± 0.03 1.53± 0.05

2.84 2.82± 0.03 1.53± 0.05

The data were obtained with a flat starting value of the P ðEÞ
distribution and without smoothing.
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As known in literature [14,15], the Bayesian iter-

ative procedure benefits from a smoothing proce-

dure, that can be carried out by means of a simple

linear function or by using a possible shape if the

distribution to unfold is known. The authors stress

that this procedure does not introduce a bias, but
simply regularizes the convergences, because the

last unfolding step is performed without fitting

and it is determined by experimental data only.

This combined procedure of fitting and iterative

Bayesian unfolding is known as the most effective

tool to obtain the parameter of a distribution of a

known shape. This means that we can obtain the

numerical behavior of the spectra of the incoming
cosmic ray, without any assumption about its

shape, or we can obtain the spectral index and

the normalization if the power law is assumed.

In order to test these assumptions in our specific

problem, different chains of unfolding iterations

were implemented, with or without the smoothing

procedure.
Table 6

The values obtained for K and the spectral index c are shown

cMC KMC

(m�2 sr�1 TeVc�1)

crecons Krecons

(m�2 sr�1 TeVc�1)

2.76 1.548 2.73± 0.02 1.53± 0.05

2.80 2.77± 0.02 1.52± 0.05

2.84 2.85± 0.03 1.56± 0.05

The data were obtained with a flat starting value of the P ðEÞ
distribution and applying a smoothing procedure.
9.3. The results on the unfolding of a power-law

spectrum

The Bayesian unfolding was performed by

using a power law or a flat distribution as the

initial value of the PðEÞ. In both cases, a soft

smoothing was applied to the nth value of the

P ðEÞ, during the recursive procedure, in order to
ensure a stable convergence. The results are sum-

marized in Tables 3–6. In all cases the results show

the stability of the unfolding procedure, without

any correlation with some variations in the itera-

tion strategies. In order to investigate the depen-

dency of the quality of the reconstructed

parameters on the number of simulated data, the
Table 3

The values obtained for K and the spectral index c are shown

cMC KMC

(m�2 sr�1 TeVc�1)

crecons Krecons

(m�2 sr�1 TeVc�1)

2.76 1.548 2.72± 0.02 1.51± 0.05

2.80 2.78± 0.03 1.53± 0.05

2.84 2.82± 0.03 1.53± 0.05

The data were obtained with the initial value of the P ðEÞ dis-

tributed as a power law and without smoothing.
same procedure was repeated by using only a
fraction of the simulated data. This investigation

shows that the errors quoted in Tables 3–6 are of

the same order of the errors resulting from

unfolding half the simulated data set.

9.4. The unfolding of a Linsley-like energy spectrum

One of the major advantage of the use of the
Bayes theorem is the possibility to unfold the pri-

mary particle spectrum without any assumption

on the shape of the spectrum itself. In order to test

the effectiveness of this feature, a Monte Carlo

data sample was simulated according to a Linsley-

like distribution given by
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Fig. 6. The Linsley-like energy distribution described by Eq. 19

is shown (dashed line) and compared with a power law distri-

bution (full line) with c ¼ 2:8 and with the same integrated flux

between 1 and 100 TeV. In the plot on the lower panel the flux

is multiplied by E2:8 in order to enhance the differences between

the two behaviors. The energies are expressed in TeV and the

units of the flux are arbitrary.
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Fig. 7. The multiplicity distribution obtained by using the

Linsley-like distribution is shown on upper panel. The energy

distribution obtained by means of the Bayesian unfolding is

shown on the plot on the lower panel: the superimposed hori-

zontal line is the result of a fit with a power law and the flux is

multiply by the value given by this power law, in order to en-

hance small differences in the energy behavior (cf. Fig. 6).

Table 7

The values of the parameters describing the Linsley-like distri-

bution of Eq. 19 obtained by means of the Bayesan unfolding

are shown

Type c1 c2 � c1 E0 (TeV)

MC 2.60 0.40 10

Reconstructed 2.62± 0.02 0.15± 0.05 11± 3
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dNðEÞ
dE

¼ N0

E�c1

1þ E
E0

� �c2�c1 : ð19Þ

The shape parameters in Eq. 19 was chosen as

follows:

c1 ¼ 2:6; c2 ¼ 3:0; E0 ¼ 10 TeV: ð20Þ
In Fig. 6 the Linsley-like spectrum described b y

(19) is compared with a power law distribution

with c ¼ 2:8 and with the same integrated flux

between 1 and 100 TeV. The Bayesian unfolding

procedure was applied to the Monte Carlo data

produced by using this Linsley-like spectrum and

the results are shown in Fig. 7. A fit of c1, c1 and E0

was also performed and the results are summa-
rized in Table 7.
10. The contribution of the helium nuclei

In the previous sections it was shown that a

fitting and the Bayesian unfolding procedure can
be successfully applied to the measurement of
the spectral index of the primary particle, with a

particular interest on the methodological aspects.

The aim of this paragraph is now to evaluate the

contribution of the helium nuclei to the shape of

the pixel-multiplicity distribution and to the un-

folding procedure itself. The following JACEE

values [25] for the proton and helium fluxes were

used:
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Eq. (21).
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and of the helium (lower panel) are shown.
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/p ¼ ð1:11þ0:08
�0:06Þ

� 10�1 � E�2:80	0:04 m�2 s�1 sr�1 TeV�1;

/He ¼ ð7:86	 0:24Þ
� 10�3 � E�2:68þ0:04

�0:06 m�2 s�1 sr�1 TeV�1:

ð21Þ

Fig. 8 shows the pixel-multiplicity distribution

obtained assuming the fluxes described by Eq. 21.
All the unfolding procedure was then repeated,

computing again the effective area for the proton

and the helium nuclei, and the two contributions

from proton and for helium were separately un-

folded by means of the Bayesian procedure. The

unfolded primary spectra of proton and helium are

shown in Fig. 9 and the reconstructed values of the

parameters describing the two contributions are
summarized in Table 8. The separately unfolding

of the two contribution is relevant as a consistency

check, but cannot be applied to real data, because

in the pixel distribution the two contributions are
Table 8

The unfolded values for the helium and proton contribution to the p

Nucleus type cMC KMC (m�2 sr�1 TeVc�1

p 2.80 1.548

He 2.68 0.491

The two contributions are separately unfolded, as described in the tex

Table 4.
mixed. The possibility to evaluate the light sector

of the primary cosmic ray composition by means

of the measurement of the pixel-multiplicity dis-

tribution is beyond the aim of this paper and it is

at present under study. In the aim of the present
work, the possibility to unfold the all nucleum

spectrum was explored. The pixel-multiplicity dis-

tribution obtained by assuming the fluxes of Eq.

21 was then unfolded by means of the Bayesian

procedure, using only the effective area com-

puted for proton-induced shower, in the aim of

the ‘‘superposition principle’’. The results of this
rimary particle energy distribution

) crecons Krecons (m
�2 sr�1 TeVc�1)

2.78± 0.03 1.53± 0.05

2.55± 0.04 0.45± 0.07

t. The values for the proton component are the same quoted in



Table 9

The unfolded values for the all nucleon spectrum obtained

assuming the primary particle fluxes described by Eq. 21

ðcMCÞeff ðKMCÞeff
(m�2 sr�1 TeVc�1)

crecons Krecons

(m�2 sr�1 TeVc�1)

2.77 1.987 2.73± 0.03 1.94± 0.05

The reconstructed parameters are compared with an effective

single power law description of the original all nucleon spec-

trum itself. See text for details on the unfolding procedure.
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(full line) is compared with the distribution used to generate the

events (histogram) and obtained by using the fluxes described

by Eq. 21. The effective power law description of the original all

nucleon distribution is also shown (dashed line).
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unfolding procedure are plotted in Fig. 10, which
shows also the description of the all nucleon spec-

trum by means of a single power law. The numer-

ical values of the unfolded parameters are shown

in Table 9, compared with the effective slope ceff
and the normalization ðN0Þeff of the single power

law description of the all nucleon spectrum ob-

tained assuming the fluxes of Eq. 21. These results

show that the unfolding procedure based on the
Bayes’s theorem can be successfully applied, in the

energy range taken into account in this work, in

order to determine the effective spectral index of

the ‘‘all-nucleon spectrum’’.
11. Toward the knee of the energy spectrum

Besides the detailed study of the primary par-

ticle spectrum in the region of some TeV and
more, the understanding of the feature of the

‘‘knee’’ region remains one of the most relevant

topic in the field of the cosmic rays. The new

generation of all sky detector, taken into account

in this work, are planned in order to reach a very

low threshold, because they are mainly devoted to
the study of the gamma astronomy. For this rea-

son it is difficult to evaluate in which way they

should be used to reach the knee energy region,

without knowing some details on the hardware

setup. The study of this topic requires a devoted

simulation, which will be the matter for a follow-

ing paper.
12. Conclusion

This work aims to demonstrate the power of the

next generation of gamma-ray detectors in order

to clarify the puzzle of the behavior of primary

cosmic rays around some TeV. The question is:

why indirect data results seem different from direct
measurement data? This work focuses on the

problem and has suggested the way to solve it. A

test was performed on a Monte Carlo data sample

in order to quantify the requirements on the data

sample used to perform the analysis and to eval-

uate the data taking period needed to obtain a

significant measurement. A standard fit procedure

and an iterative Bayesian unfolding procedure
especially arranged to deal with this problem were

used. The two procedures show comparable power

to obtain the physics parameters and the Bayesian

unfolding method has the additional peculiarity of

not requiring any assumption about the shape of

the primary spectrum. The helium contribution to

the pixel-multiplicity distribution was also studied,

and it was shown that the ‘‘all nucleon spectrum’’
can be successfully unfolded in the energy region

of interest for our work. Further studies on the

exploration of the knee region or on the possibility

to extract informations from an huge amount of

data, into which statistical uncertainties are negli-

gible, are beyond the aim of the present work. The

exploration of the ‘‘knee’’ region requires a de-

voted Monte Carlo simulation and a detailed
study on the peculiarities of its sensitivity to high

energy showers. On the other hand, the analysis of
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a large data sample is possible only if the system-

atic uncertainties of the detector and of the simu-

lation are known, because systematics dominate

when statistical uncertainties are negligible.
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