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Abstract

A neural algorithm was developed to separate electromagnetic and hadronic showers detected with an air shower
array. The requirements on the detector performance are very general, so that the results of the calculation can be
applied to a wide set of detectors, actually operating or planned for the future. More then 700000 showers were
generated using the Corsika package and were propagated through an ideal pixel-like detector. The peculiarities of each
class of showers are presented in detail and it is shown how the neural net architecture is structured around them. The
neural net performances were studied for different sets of simulated data. The physics relevance of the gamma-hadron

separation is also discussed. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Extensive air showers; Gamma astronomy; Neural networks; Cosmic rays

1. Introduction

The problem of separating gamma-induced
showers from proton-induced showers is a well-
established topic in the physics of cosmic rays [1-
7]. In the field of gamma astronomy there is wide
interest concerning the effort to extend toward the
region of 1 TeV the search for signals of unknown
point-like gamma-ray sources. The data coming
from conventional extensive air showers (EAS)
array detectors are above 50 TeV, because of their
high thresholds, while measurements outside the
atmosphere cannot reach the TeV region because
of the gamma low-flux due to the steep energy
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spectrum of the sources. Cherenkov detectors
reach TeV energies, but with a low duty cycle and
a small solid angle. For these reasons, the detec-
tion of gamma ray sources in the TeV region re-
quires specific experiments, like Milagro in New
Mexico [8] or ARGO-YBJ in Tibet [9,10]. The
performances of these kinds of detectors are dis-
cussed in a very general way in Ref. [11]. If this
class of detectors could provide also a separation
between the gamma ray from the source and the
background due to the cosmic ray, the detector
sensitivity would increase. A shower array detector
seems to be the best choice for this field of gamma-
ray astronomy, because of its duty cycle and of its
large angle coverage, which permit a continuous
all-sky search for unknown sources. In order to
lower the threshold, the apparatus must be in-
stalled in high-altitude laboratory, like Chacaltaya
[12], Yangbajing [13,14] or other proposed sites
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even at higher altitudes [15]. Focusing the interest
on EAS detectors, the discrimination between
gamma- and hadron-induced showers can be per-
formed essentially in three ways:

(1) by a different trigger sensitivity to showers in-
duced by gamma or by hadrons;

(i1) by identifying particles typical of the had-
ronic shower (i.e. muons or neutrons);

(iii) by studying the different topological struc-
tures of the gamma- or hadron-induced show-
ers.

The first point is a quality factor, generally
known as Q or R, (see Section 7.2 for details),
intrinsic to each detector, which slightly increases
the overall sensitivity. The second method, with
special regard to muons, was widely used by array
detectors [4,16-18] but is not practicable in all the
situations, at least for two reasons:

(1) the technique requires additional hardware,
which cannot always easily equip the shower de-
tector or that can be added only in a very small
fraction of the full apparatus;

(i1) the number of specific hadronic shower par-
ticles is too low for the energy region which con-
cerns our work.

These two points are strictly linked one to the
other: if we want to detect very low fluxes of spe-
cific particles contained in the hadron-induced
EAS, the upgrade of the apparatus should be
substantial. It has to be considered that the num-
ber of muons for hadron-induced showers of 1
TeV is of the order of 1 p over 150 x 150 m? at sea
level [11]. Also the neutrons are secondary parti-
cles produced in the hadron-induced showers [19]:
however their detection seems difficult to achieve,
because of the low flux and because the neutrons
induced signal is delayed with respect to the
shower. Using a pixel-like shower array, the col-
lected data reproduce the spatial structure of the
front of the shower; the position of the hits on the
detector and their density are two fundamen-
tal observables which every apparatus can store.
Using this electronic shower image it is possible
to separate gamma and hadron showers with high

degree of reliability: a neural algorithm can be
planned to distinguish, event by event, one class
from the other by means of different topological
behaviors that are evident in an averaged sample.
A similar use of a neural net was implemented in
the past at TeV energy for Cherenkov detectors [3]
or at energy above 30 TeV for air shower arrays
[4]. Also, for balloon-borne experiments [20] and
calorimetric detectors at the LHC energy [21],
neural net techniques were applied. The aim of the
present work is to exploit the possibility of using
the neural net algorithm for air shower arrays
around and below the TeV energy region. For
these reasons, we chose to sample the shower front
at a slant depth of 600 gcm~2, corresponding to
high altitude sites (i.e. Chacaltaya and Tibet),
closer to the shower maximum, in order to obtain
an electronic image of the shower as detailed as
possible and to lower the energy threshold down to
the hundreds of GeV. Further on we will briefly
describe the characteristics of an ideal detector and
the requirements concerning its reconstruction
power. Later we will discuss the Monte Carlo data
sample and the characteristics of the two classes of
events will be presented in detail. In the third part,
based upon the first two sections’” assumptions and
their results, we will present the structure of the
neural network and the philosophy behind it, in
relation to certain peculiarities of the whole
problem. The fourth part will be devoted to a
detailed analysis of the performance of the neural
network, for different sets of events classified on
the basis of observable quantities. The conclusion
will discuss the improvement of the detector sen-
sitivity in the field of gamma astronomy.

2. The ideal detector performance

An ideal detector [11,22,23] should be able to
furnish the electronic image of each event: we have
in mind a pixel-like detector, with each active el-
ement (scintillator, streamer tubes, RPC, and so
on) of the order 50 x 50 cm?. These active ele-
ments can concretely be the physical substructures
of the whole detector or can be logically designed
during the event reconstruction; for the purpose of
computation we need only to know the particle
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density averaged over each elementary surface. We
suppose also that this density can be modeled on a
digital scale spanning from 0 to 7 (3 bit word). An
important element in the gamma-hadron dis-
crimination is the possibility to measure the par-
ticle density with great accuracy over the largest
possible area: for this reason the apparatus is
supposed to be a full coverage detector. We have
considered in our computation a continuous
square made of 20000 logical pixels (correspond-
ing to about 70 x 70 m?) and with a dead space of
the order of 5%. With such a detector, by using a
very rough algorithm for the core reconstruction,
based on the center of gravity of the hits distri-
bution, we obtained a spatial resolution spanning
from 2.5 to 7.0 m, depending on the characteristic
of the shower. The core reconstruction will be
improved by a factor of ~30% by means of a fit-
ting procedure of the radial shape of the hit den-
sity. We have tested that the identification power
of the net is lowered by a few percent by such a
level core reconstruction uncertainty (see Table 6).
For these reasons and because we want to focus on
the gamma-hadron separation problem, we will
present the results requiring that the detector
should be able to reconstruct the position of the
core with an uncertainty of 3 m along each direc-
tion. The spread is supposed to be distributed
along a Gaussian with such a width and we also
suppose that each coordinate is independent from
the other. By using a fitting algorithm to evaluate
the core coordinates, their estimation is roughly
independent from the core position on the carpet.
We have simulated a trigger based on a majority
logic, requiring a coincidence of at least 25 fired
pixels in a time window of 300 ns. The time win-
dow size was estimated considering the time delay
between two particles hitting two opposite corners
of the detector for incoming showers at a maxi-
mum zenith angle of 60°. The trigger efficiency
affects only the population of each subsample
(gamma or hadrons-induced shower) without in-
fluence on the geometrical structure of the detected
electronic image of the shower. On the contrary,
the efficiency for each logical subdetector is rele-
vant, because in principle it could distort the
geometrical structure of the event. We suppose
that the detector has an overall efficiency of the

order of 95%. This is the most simple trigger that
can be implemented for an ideal detector, without
taking into account the peculiarities of each ap-
paratus. We stress that these requirements fit very
well with the conceptual design of a new genera-
tion shower array detector [11]; however, the re-
sults can be modified or scaled over the more
realistic structure of existing [8] or planned detec-
tors [24,25].

3. The Monte Carlo data sample
3.1. The events generation

The events were generated by using Corsika [26]
code 5.61 which provides a complete simulation of
the shower development in the earth’s atmosphere.
The electromagnetic part of the shower simulation
is realized by the EGS4 code [27,28], while for the
hadronic component several options are available:
the Monte Carlo data generated for this paper
were processed by VENUS code [29] for the high
energy hadronic interactions and by GHEISHA
code [30] for the low energy hadronic interactions
[31]. The data were generated in the energy range
100 GeV to 10 TeV with the usual energy distri-
bution given by

N(E)dE = NyE"*"dE. (1)

The relevant parameters used in the events
generation are reported in Table 1. In order to
avoid an accumulation of simulated data in the
lower energy bins, data were generated in different
energy intervals, according to the energy spectrum
given by Eq. (1), as shown in Table 2. The image of

Table 1
Parameters used for the Monte Carlo events
Primary Spectral Energy range Energy threshold
particle index (TeV)
Proton 2.7 0.1-10 E, =5 MeV
Eyci- =30 KeV
Ehadron = 5 MeV
Gamma 2.7 0.1-10 E, =5 MeV

Ey,e*’ =30 KeV
Ehadmn =5 MeV
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Table 2
Number of generated showers in different energy intervals of
the primary particle

Primary energy interval Number of generated

(TeV) showers

Gamma Proton
0.100 < E < 0.500 360000 360000
0.500 < E < 1 12000 12000
I1<E<3 5000 5000
3<E<10 770 770
Overall (0.100 < E < 10) 377770 377700

each shower was sampled at the altitude of 600 g
cm~2 and was recorded and prepared for the de-
tector simulation.

3.2. Detector simulation and data processing

The Monte Carlo were processed through a
code simulating the expected performance of a
detector which satisfies the general requirements
(high duty cycle, large effective area, high altitude,
fast timing) and the geometrical setup (20000
pixels covering about 70 x 70 m?) discussed in
Section 2. For a realistic simulation of such a de-
tector we have implemented the logical pixels as a
single layer of RPC chambers, equipped with strips
or pads as pickup electrodes, which can easily fit
the requirements we have discussed. The detector
simulation takes into account the energy loss in the
material, including the RPC, the ionization pro-
cess in the RPC gas and the RPC efficiency. The
background generated by each logical pixel has
been simulated and added. The trigger described in

Table 3
Number of events surviving the general cuts due to thresholds
and trigger

Mean primary CR energy Number of detected

(TeV) events

Gamma Proton
0.100 < E < 0.500 36720 5980
0.500 < E< 1 10612 10060
I<E<3 4470 3814
3<E<10 700 731
Overall (0.100 < E < 10) 52502 20585

The core of each event is put at the center of the detector (see
text for details).

Section 2 was applied. The number of events
passing the trigger logic are reported in Table 3.
We chose to put the shower core on the center of
the detector, in order to analyze the performance
of the net in a situation in which the shower is well
reconstructed. The effect of the core position on
the net identification power will be discussed later
(see Section 6.2).

4. Characteristics of gamma and hadron showers
sampled by a pixel-like detector

The pattern of the hits distribution can be used
to distinguish between electromagnetic and had-
ronic showers, and for this reason we have studied
in detail the geometrical behavior of the two
classes of events, sampled at 600 gcm~2. In order
to plan the neural network architecture, we must
know the general behavior of gamma and hadron
events as a function of the observables detected in
the apparatus. The two classes of showers can be
distinguished by the different radial profile and by
the presence, in the hadronic showers, of local
fluctuations induced by small electromagnetic
subshowers produced by neutral pion decay. We
stress that the two different topological behaviors,
enhanced by the very high altitude we assumed,
can produce useful information for discrimination.
These different topological behaviors should be
used in order to separate gamma- from hadron-
induced showers. In Fig. 1 we show the distribu-
tion of the hits number as a function of the pixel
coordinates for gamma- and proton-induced
showers. The two distributions show that the two
classes of events, averaged over the whole energy
range and over all the generated events, are clearly
different. Another tool useful in distinguishing
gamma- from hadron-induced showers is the dis-
tribution of the fluctuations of the number of hits
detected by each pixel unit. We consider the
quantity F(x,y) defined as:

_ |]Vhits - <Nhits>|

P =

, )

where the mean (Ny;s), computed event by event, is
a function of the distance from the core of the
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Fig. 1. The hits distribution in the detector, for vertical events with the core at the center of the carpet, for gamma (left) and protons
(right). Distances are measured in meters with respect to the corner of the detector. The dimension of the pixel is 50 x 50 cm?. Data are
averaged over all the generated events.

shower. Details of the computation are discussed
in Section 5.2. Because of the presence of absolute
value, F(x,y) can assume very different values also
for events with the same number of fired pixels,
due to the fluctuations around the mean value. The
distribution of this quantity for electromagnetic
and hadronic showers is shown in Fig. 2. The
Monte Carlo events have been classified in several
groups according to intervals in the number of hits
recorded in the apparatus. As can be immediately
seen from Table 3, the yield of the events which
trigger the detector is different for gamma and
hadron in the same energy range. In order that

F(xy)
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events generated in a very wide energy range with
yields different for gamma and hadron in an en-
ergy dependent way not be processed as a whole
sample, we classified the data by using the hits
number, which is an observable. For each class of
events of a different hits number, we could then
tune the neural network in order to maximize its
discrimination power. As an example, we show in
Fig. 3 the behavior of the quantity plotted in Fig. 2
with regard to the two classes of the hits number:
75-100 and 150-200 hits per event. As is evident,
the selection of hit intervals reduces the contami-
nation level: the distributions referring to the same

Fig. 2. The fluctuation F(x,y) in the hit distribution, as discussed in the text, is shown for vertical events with the core at the center of
the carpet (gamma: left, proton: right). Distances are measured in meters with respect to the corner of the detector. The units of the z-
axis come from Eq. (2), measuring the number of particles over a pixel 50 x 50 cm? wide. Data are averaged over all the generated
events.
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Fig. 3. The fluctuation F(x,y) in the hit distribution
protons: right). See the text and Fig. 2 for details.

hit interval (Fig. 3) are more sharply different than
the overall one (Fig. 2).
5. The neural network
5.1. General setup
The distribution shown in the previous pictures

(see Figs. 1-3) are averaged over all the events: the
purpose of the neural network is to distinguish
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in two different hit intervals: 75-100 (down) and 150-200 (up). (gamma: left,

between the two classes event by event, and not
only when all the fluctuations are smoothed by the
statistics. For this reason the network must be
planned with two logical steps in mind:

(i) to identify functions of observables which
can discriminate between the two classes event
by event;

(ii) to combine the discrimination power of the
functions of point (i) in order to obtain the final
rejection factor.



S. Bussino, S.M. Mari | Astroparticle Physics 15 (2001) 65-77 71

The first point should take into account the
rotational symmetry intrinsic to this kind of pro-
cess. The second step involves the optimization of
the rejection factors resulting from the different
functions of the observables. We have designed the
network taking into account that the number of
free parameters is closely correlated to the number
of Monte Carlo events needed to teach the net-
work. In Sections 5.2 and 5.3 we will describe in
detail the structure of the neural network.

5.2. The input layer

The neural network (see Fig. 4) is a standard
three layer perceptron, with only one output neu-
ron. The input layer consists of four neurons, each
of them reading different functions of the observ-
ables. Each neuron has a number of inputs equal
to the number of pixels in the detector, plus a bias
signal to set the threshold. We divided the elec-
tronic image of each event in 1 m wide circular
coronas, centered around the core of the shower.
We symmetrized the neural weights within each
corona: all the inputs connected to the pixels be-
longing to the same corona have the same weight.
In this way, based upon the intrinsic symmetry of
the whole physics process, the weight number is
reduced to a maximum of 145 (corresponding to a
shower with the core centered in one corner of the
detector) instead of 20000 (one for each pixel).
The first function, used as input for the first neu-
ron, is simply the intensity of the signal in each
pixel. The second neuron reads as input the square
number of the intensity of the signal in each pixel,
in order to amplify the big signals, which are less

Fig. 4. The basic setup of the network. See text for comments.

sensitive to local fluctuations. So the functions
used by the first two neurons reflect the geomet-
rical shape of the shower. The other two neurons
of the input layer are sensitive to the fluctuations
of the data; the third neuron receives as input the
quantity F described by Eq. (2). The mean (M) 18
computed, event by event, over the hits belonging
to the same circular corona. The inputs of the
fourth neuron are the local maxima of the quantity
F: only if the value of F(x,y), computed in a pixel
of coordinates (x,y), is greater than the value that
F has on the eight contiguous pixels on the
boundary, it is used as an input to the fourth
neuron. The initial values of the weights of all
these four neurons are randomly set to a positive
value less than one.

5.3. The hidden and the output layers

Each neuron in the input layers has a rejection
factor, with respect to the electromagnetic and
hadronic shower, which depends on the pixels
number and on the function processed by the
neuron itself. The aim of the hidden and of the
output layer is to improve the rejection factor by
combining the outputs of the input layer neurons.
We implemented a two neurons hidden layer,
which seems a good compromise between flexibil-
ity and power. The initial values of the weights of
the hidden layer are set in such a way that the first
hidden neuron works like a logical OR and the
second one like a logical AND. The aim of the
output neuron is to furnish the final result and
the classification of the shower (i.e. 0 for gamma-
induced showers and 1 for proton-induced show-
ers). The initial weights of the output neuron are
set in such a way that the neuron discriminates
along the diagonal on the plane of the two outputs
of the two hidden neurons.

5.4. The learning training

The network training is performed using a clas-
sical back-propagation technique, slightly modi-
fied in order to avoid the stand-by of the net on
local minima or on the edge of the error func-
tion. The transfer function of each neuron is a
sigmoid, common in a multi-layer network. A very
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important requirement is the stability of the net-
work results, i.e. the degree of confidence that we
deal with after the learning training. The required
result is that the network discriminates between
the two sampled classes with the same rejection
power during the learning training and during the
period when it is required to analyze a new data
set. In order to minimize the fluctuations due to
non-physics broad changes in the weight profile,
the weight w of each input neuron was studied as a
function of the distance r from the core. This
quantity must be smooth, because it reflects the
radial distribution of the shower, averaged over
events within the same hit number. For this reason
a soft smoothing was applied to this weight profile,
in order to avoid non-physics characterization of a
single event in the learning data sample. A very
usual smoothing algorithm was used:

_ wi(r — 6r) + 2 x :/,-(r) + wi(r+ 0r) )

where O is the width of each circular corona. The
behavior of the weights of the first two input
neurons is shown in Fig. 5: the smooth profile
ensures us that the network answer is of the same
order on both the learning and on the testing
samples. From a conceptual point of view, this
procedure has the same meaning as a very soft
learning training with a very large number of
Monte Carlo data. This was tested on a reduced
data sample.

Wit1 (r)

6. Results concerning gamma-hadron separation
6.1. Discrimination factor for central core events

As discussed in Section 5, the data sample was
classified into different subsets, according to the
number of hits in the event. The data sample was
processed using half of the available data to teach
the net and the other half to evaluate the rejection
power of the net. The results are summarized in
Table 4, where the fraction of particle rightly
identified is shown, which is the identification
power of the neural network. The results that fig-
ure in Table 4 are obtained using the real core of
the event. In order to simulate the uncertainties in

w(r)
005 £

0.2 —
0.15 -~

0.1 -
0.05 —-"

0.05 —

60 M

40 40
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20 m

Fig. 5. The values w(r) of the weights of two input-layer neu-
rons (up and down) as a function of the pixel coordinate,
measured in meters with respect to the corner of the detector.

the core reconstruction, we added a random error
to the real core position and we measured a second
time the identification power of the network. The
scattering added to the core position was distrib-
uted along a Gaussian with a 3 m RMS. The re-
sults obtained in this framework are of the same
order as those obtained without taking into ac-
count the error reconstruction. This result can be
easily understood looking at the weight profile, as
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Table 4
Identification power ¢ for gamma and proton showers hitting in
the center of the detector, for different number of hit intervals

Hits number Total number True identification

of events
€y €h
25<n<50 10750 70% 69%
50<n<75 3760 75% 71%
75<n< 100 1815 75% 73%
100<n< 150 1640 80% 75%
150 <n <200 760 81% 79%

shown in Fig. 5: the slope is smooth and the class
of events is symmetric with respect to the center.
Because of that, a slight shift in the core position
has a slight influence on the whole input signal.
The discrimination power coming from each neu-
ron was estimated. The contribution to the dis-
crimination factor ¢ due to the first two neurons,
which describe the geometrical behavior of the
shower, is of the order of 0.65, both for gamma
and hadrons. The contribution of the last two
neurons, which describe the local fluctuations of
the shower, raises the discrimination factors €, and
€p up to the values reported in Table 4. This con-
tribution is not negligible, because the enhance-
ment of the detector sensitivity is a steep function
of the discrimination factors €, and ¢, as shown in
Fig. 7.

6.2. Discrimination factor for edge core events

In order to study the effects of the core position,
we generated a set of events with the core on the
edge of the detector, as discussed in the section
devoted to the Monte Carlo simulation. The dis-
tribution of the hits in the detector is shown in Fig.
6. The core position plays a very important role in
the discrimination problem in two ways:

(1) the shower sampled by the detector is now
asymmetric;

(i1) the effect of the error on the core reconstruc-
tion is not reduced by the symmetry of the sam-

pling.

During the analysis the two aspects were sepa-
rated and the first problem was studied changing

40

30

20

Fig. 6. The geometrical distribution of the core of the events
generated on the edge of the detector, as discussed in the text.
Distances are measured in meters with respect to the corner of
the detector.

only the position of the core and assuming the
Monte Carlo real core as the center of the shower.
The effects on the discrimination power are shown
in Table 5, for the usual data classification by
means of the hits number. Also in this case the
neural network rejection power is slightly affected,
and this fact can be understood by underlining
that even for events hitting the apparatus at one
edge, a fraction of the hit can be detected at great
distances from the center and this, at least for high
populated events, can balance the loss of informa-
tion due to the part of the shower hitting outside
the detector. The whole effect due to the posi-
tion of the core can be studied adding a random

Table 5

Identification power e for gamma and proton showers gener-
ated with the core on the edge of the detector, for different
number of hits intervals

Hits number Total number  True identification

of events
€y €h
25<n<50 9175 70% 70%
50<n<75 2890 77% 76%
75<n< 100 1230 79% 77%
100<n <150 1110 79% 78%
150 < n <200 450 80% 83%
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Table 6

Identification power e for gamma and protons showers gener-
ated with the core on the edge of the detector, for different
number of hits intervals

Total num- True identification

ber of events

Hits number

€y €h
25<n<50 9175 0%  67%
50<n<75 2890 7% 5%
75<n<100 1230 7%  16%
100 <7< 150 1110 8%  71%
150 <7< 200 450 80%  81%

The uncertainty in the core determination is taken into account
in evaluating the identification power of the network. The same
Monte Carlo data sample of Table 5 has been used.

error to the core position, using the same algo-
rithm described in Section 6.1. In this case, the
results shown in Table 6 suffer a loss in the dis-
crimination power, due to the new topology of the
problem which no longer has an intrinsic symme-
try capable of compensating for small shifts in the
reconstructed core position. We underline, how-
ever, that the discrimination power is generally of
the order of 75% or more, a value high enough to
obtain a substantial enhancement in the sensitivity
of the detector, as shown in Section 7.

7. Improvement on gamma ray physics analysis
7.1. Enhancements of the detector sensitivity

In Section 6 we discussed the sensitivity of the
network to identify gamma-induced showers.
What is important for the gamma astronomy is the
statistical significance of the flux estimated by the
number n(y) of detected gamma showers. If we
consider the number of data detected in a given
direction, the sensitivity of the apparatus results
from the ratio between the gamma flux (unknown)
and the fluctuation of the hadron showers back-
ground 7n(h) (a well-known value). With the aid of
the neural network rejection, the number of pro-
tons is suppressed by a factor (1 — e,) (neglecting,
of course, the contribution from the gamma
showers), while the gamma signal is reduced by a
factor €,. The required ratio is:

ny) ¢ &
V) /o) /(1 -a)

VAT dQ, 4)

where T, is the observation period, 4T is the
effective area of the detector for gamma- or ha-
dron-induced showers, and ¢, and ¢, are the
fluxes of the source and of the cosmic rays back-
ground. The sensitivity of Eq. (4) corresponds to
an effective observation period given by:

Teff N e(y)2

obs ~

Tobs_l_ﬁh_?” (5)
where €, > ¢, ~ 0.8 is assumed. This means that a
rejection factor of ~80% furnishes an increase in
the sensitivity corresponding to an observation
time three times longer, while a rejection factor of
~70%, which represents our worst result, corre-
sponds to an observation time more than two
times longer. We underline that the rejection
power of the neural network can be tuned in order
to fit the particular problem under analysis: for
example, in some particular cases we may not
necessarily be interested in obtaining a similar
value for the two parameters €, and ¢,, but in re-
ducing the contamination by suppressing one of
the two contributions. In the field of gamma as-
tronomy, the relevant quantity is that of Eq. (5). In
Fig. 7 we show the behavior of this quantity, as a
function of €, for different values of €, + ¢, which
represents an estimation of the global identifica-
tion power of the neural network.

Therefore, the use of a neural network can im-
prove the sensitivity of the apparatus, lowering the
total observation time required to detect a gamma
ray source above the cosmic ray background.

7.2. The Crab as a standard candle

As an example, we can briefly discuss the sen-
sitivity of this kind of detector by evaluating the
observation time required to detect the standard
Crab signal over the cosmic rays background. The
signal to noise ratio (see Eq. (4) for a simplified
expression) in a more accurate way is given by the
following equation:
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Fig. 7. The enhancement in the gamma ray sensitivity, as a
function of e,, for three different values of the global identifi-
cation power of the network: 80% (—), 75% (- - -) and 70% (- --).
See text for details.

n(y) 0.72
n(h) Torsf (9) 2n(1 — cos 0)

eff
I,

\/ fAﬁfquh dE’

where f(0) is the time fraction at which the source
at declination ¢ is seen by the detector, 6 is the
angle of view opened around the source in order to
collect a fraction 0.72 of its flux. If the neural
network information is used, this sensitivity in-
creases by a factor shown in Eq. (4). The Crab flux
[33] and the cosmic ray background flux [34] are
given by:

¢S ~32%x 107"E em?sT eV,
¢y~ 1.1 x 10°E28 em2s 'sr ' TeV .

(6)

(7)

A relevant parameter in Eq. (6) is the effective
area of the detector. In order to obtain a realistic
evaluation of this parameter, we use the values
computed by the Argo [24] and the Milagro col-
laborations [8] for their two detectors. In both
cases the effective area for gamma is quoted as
~10000 m? at 1 TeV. The geometrical area of

these two detectors is of the same order
(60 x 80 m? for Milagro and 78 x 74 m? for Argo)
and it is comparable with the ideal detector size
discussed in Section 2. For these reasons, this
value of the effective area for gamma can be cho-
sen as a realistic and safe value. The detector
sensitivity as a function of the gamma and hadron
effective areas is, in first approximation, propor-
tional to Ry\/ATYff , where R, = /A4,/4; is due to
trigger effects. This trigger factor R, is greater than
1 and is closer to 1 as the energy increases [32]: by
assuming the value 1, we will obtain a lower value
for the performance of the detector. The angle 0 is
related to the angular resolution of the apparatus,
which can be roughly estimated by taking into
account the time resolution of a single pixel (~1
ns, see Section 2) and the linear dimension of the
full detector (~70 m). A value 6y ~ 1° can be as-
sumed, including the full chain of data acquisition,
as reported also by the two collaboration Argo
and Milagro. Finally, the factor f(9) is of the or-
der of 0.20-0.25 for a source like the Crab and an
apparatus in the Northern hemisphere, around the
Tropic line of Cancer. By inserting these values in
Eq. (6) and integrating above 500 GeV we can
compute the observation time required to detect
the Crab with a signal of 5¢ above the cosmic ray
background:
(TS0) . =~ 320 days. 8)
A more accurate computation was obtained
taking into account the energy dependence of the
two effective areas 45" and 4, as estimated by the
Argo-YBJ collaboration [24]. Their behavior was
scaled to the dimension of the ideal detector de-
scribed in Section 2 and inserted in Eq. (6). The
result of the numerical integration is:
(Tocbrsab)zzNet ~ 120 days. )
The difference between this detailed computa-
tion and the rough estimation of Eq. (8) can be
understood by taking into account the behavior of
the factor R,, which in the relevant energy region
of 0.5-1 TeV is around 2.5 and is 1 above 5 TeV. A
one year 5S¢ sensitivity for a point-like gamma ray
source, by using a factor /3 from the network
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discrimination signal (see Egs. (4) and (5)) and by
assuming the same slope as the Crab one, can be
simply obtained by scaling the result of Eq. (9):
(Do) oy = 107ME™5 em ™25 TeV ™. (10)
Without using the network discrimination infor-
mation, the same source will be detected, with the
same 5S¢ signal above the cosmic rays background,
in three years.

8. Conclusions

The gamma-hadron separation has been stud-
ied by means of a neural network. A standard
three layers perceptron was used to set up the
network and particular care was taken in choosing
the variables more sensitive to the different topo-
logical behavior of the gamma- hadron-induced
showers. A fine tuning of the error back propa-
gation was performed. In order to plan and to test
the network, more than 700000 showers were
generated in the energy range 100 GeV to 10 TeV
using Corsika package 5.61. The identification
power of the network (¢) was measured for gamma
and hadron showers: in Fig. 7 the global en-
hancement in the gamma-ray sensitivity was re-
ported for a wide interval of the e, parameter. The
present work can be compared with the neural
network discrimination power applied to the HE-
GRA and WHIPPLE detectors. The results dis-
cussed in Ref. [4] are related to the HEGRA air
shower array [35], operating above 30 TeV: they
obtained a proton identification factor ¢, ~ 0.95,
with a gamma identification factor €, ~ 0.6. The
comparison can be performed by looking at Fig. 7:
HEGRA result €, +¢, >~ 1.55 lies between the
curve obtained with €, +¢, ~ 1.6 and that one
obtained with ¢, +¢, ~1.5. A gamma-hadron
separation in the same energy interval was dis-
cussed in Ref. [3] by using the WHIPPLE Obser-
vatory TeV Imaging Telescope [36]. Also in this
case their neural network identification power
(ep ~ 0.99 and €, ~ 0.6) lies between the same two
curves in Fig. 7, much closer to the best one. It
should be considered that a Cherenkov, by using
cuts on the image parameters and because of the

high angular resolution of such a technique, can
obtain a great enhancement in the sensitivity to a
point-like gamma-ray source, for example, for the
Crab, 340 in 65 h of effective data-taking (between
November 1988 and March 1989) [3], or 21¢ in 20
h of effective data-taking (between November 1995
and January 1996) [6]. If a full sky survey is re-
quired, the comparison must take into account
that the shower array detector has a large solid
angle sensitivity, with a © sr angular acceptance
for zenith angles between 0° and 60°, while the
Cherenkov detector is a pointing device with a
field of view of 4° circa. Moreover a shower array
detector has a duty cycle close to 100%, while for a
Cherenkov apparatus, the effective data-taking
during one year is of the order of 800-1000 h. If we
consider all these factors, the ideal pixel detector
considered above (see Section 2) can perform a
more detailed full sky survey, due also to the ad-
vantage of a high duty cycle and the possibility
of studying transient phenomena and large time
scale structures. The neural network described in
this paper can improve the overall sensitivity, as
discussed in the text. Other discrimination tech-
niques, such as the identification of specific parti-
cles, generated in a hadron-induced shower, are
powerless at this energy, mainly because of their
low flux, as discussed in Section 1. With the gen-
eral fashion detector discussed in the present work,
the Crab signal can be detected in 120 days at 5S¢
above the cosmic ray background. For this reason
the apparatus can be employed in the search of
weak gamma ray sources: this search can benefit
from the neural-net signal in order to lower the
minimum flux detectable at 5¢ during a one year
period of data-taking: as shown in Eq. (10), this
flux which is of the order of a third of the Crab
flux, assuming the same energy spectrum.
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