γ/h discrimination with muon identification at Argo-Ybj

Katia Fratini University of Roma Tre

• The Argo experiment

- Cosmic ray background rejection by means of muon identification
 - Simulation
 - Estimate of the background rejection effectiveness
 - Estimate of the sensitivity to the Crab nebula with muon identification

The Argo experiment

- Yangbaijing, Tibet
 - 4300 m a.s.l.
- Surface ~ $10^4 \, \text{m}^2$
- RPC (Resistive Plate Chamber)
- Full Coverage

 $E_{threshold} \sim 100 \ GeV$

Continuous and systematic monitoring of the sky by means of a large field of view.

What does Argo measure?

Time and position of the first particle which hit one pad

Number of hit pads

Status of the experiment

The detector is under construction:

- 30 clusters will be in data taking within June 2004
- 70 clusters will be in data taking within December 2004
- The whole apparatus will be in data taking at the end of 2005

Picture of an event on 16 clusters

y-ray observation

 $\gamma\text{-ray}$ observation from earth-based experiments suffers from the huge background constituted by charged primary hadrons

 good angular resolution
 For a detector surface of 1000 m²: N(E>1TeV) ~ 6700 γ/yr Crab nebula N(E>1TeV) ~ 1.6·10⁹ p/sr yr protons

 Solid angle aperture Ψ = 1° N(E>1TeV) ~ 5000 γ/yr Crab nebula N(E>1TeV) ~ 1.5·10⁶ p/yr protons

 $S = N_{\gamma} / (N)_{p}^{1/2} \sim 4$

 $Ω = 2π \cdot (1 - \cos \Psi)$ Ψ

Background rejection

Background can be further reduced by exploiting the differences between the two kinds of air-shower...

- Topology (software algorithms)
- Particle type (hardware technique: muon identification)

Sensitivity increases by a factor ${\bf Q}$

 ϵ_{γ} electromagnetic air-shower fraction identified as such ϵ_{B} hadronic air-shower fraction identified as such

Discrimination by means of muon identification (tens of TeV)

The mean number of muons for vertical air-showers as a function of the primary energy

Electromagnetic showers are poor in muons

- Pair production $\mu^+\mu^-\sigma$ ~10 μb
- Photo-production σ ~100 μb

Main purposes

This work is a study of the background rejection by means of muon identification with the Argo experiment

- •At what energy the background rejection by using muon identification technique becomes effective?
- How much is it effective ?
- What is the ratio between signal and background fluctuation?
- The Crab nebula is the reference source
 - simulation of the Crab and background emission spectra
- At present Argo cannot detect muons: an ideal muon detector has been considered
 - simulation of the detector response
- •Estimate of the background rejection efficiency
- •Estimate of the sensitivity to the Crab

Simulation of the air-showers and the detector response

- CORSIKA
- Air-showers generated by photons(Crab) $\Phi(E) = 3.2 \cdot 10^{-7} E^{-2.49} m^{-2} s^{-1} TeV^{-1}$
- Air-showers generated by protons $\Phi(E)= 8.98 \cdot 10^{-2} E^{-2.74} m^{-2} s^{-1} sr^{-1} TeV^{-1}$

Sample	Events	Energy (TeV)	Index
Photons	406820	1-50	-1
Photons	72150	50-100	-1
Protons	530718	1-50	-1
Protons	94130	50-100	-1

- ARGO-G (GEANT3)
- Trigger multiplicity 20
- Layer of lead
- Noise 400Hz/Pad

Enlargement of the detector active surface

Ideal muon tracker $A_{tot} = 1500 \text{ m}^2$ $A_{tot} = 2500 \text{ m}^2$ $E_{\mu} > 1 \text{ GeV}$ $\epsilon_{det} 100\%$

Event reconstruction and analisys

Argo reconstruction software: Medea++ (C⁺⁺ code)

Noise filter Air-shower core reconstruction Arrival air-shower direction reconstruction

> Event selection $\Psi_{70} = 0.29^{\circ}$ $\theta < 40^{\circ}$ $A_{f} = 107X95 \text{ m}^{2}$ Multiplicity is the observable Bin of integrated multiplicity

Mean muon multiplicity ($A_{\mu} = 1500m^2$)

N_{pad} > 1000

Calculation of the rejection factor Q

- Distribution of the number of muons contained in air-showers generated by protons and photons
- Choice of the number of muons with wich the two types of showers are discriminated : in the figure $N_{\mu} = 2$
- Calculation of the identificiation efficiency $\epsilon_{\gamma} e \epsilon_{p}$

Q versus muon number

The same procedure can be applied for several values of the cut on the number of muons...

Q versus energy (1500 m²)

Sensitivity to the Crab nebula

Sensitivity to the Crab nebula (with muon identification 1500 m²)

Sensitivity (ଗ)

Energy (TeV)

Sensitivity to the Crab nebula (with muon identification $1500 \text{ m}^2 \& 2500 \text{ m}^2$)

Study of the Crab spectrum at high energy

Conclusions

- A simulation study based on the different muon content which characterises electromagnetic and hadronic showers has been made with the view to identify the background for γ-ray observation with Argo.
- The background rejection factor Q has been estimated: good values for Q are at about 10 TeV.
- The sensitivity to the Crab by using the muon identification technique has been estimated: in 1 year of data taking, using a muon detector area of 2500 m², the sensitivity is 20σ at about 10 TeV and $\sim 30-40\sigma$ at 40 TeV, with a discriminating muon value equal to 4 muons.