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A multiscale method for gamma/h discrimination in extensive air showers
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Abstract: We present a new method for the identification of extensive air showers initiated by different primaries. The
method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary
particle distributions together with a properly designed and trained artificial neural network. The separation technique is
particularly suited for being applied when the topology of the particle distribution in the shower front is as largely detailed
as possible. Here, our method is discussed and applied to a set of fully simulated vertical showers in the experimental
framework of ARGO-YBJ, taking advantage of both the space and time distribution of the detected secondary particles in
the shower front, to obtain hadron to gamma primary separation in EAS analysis. We show that the presented approach
gives very good results, leading, in the 1-10 Tev energy range, to an improvement of the discrimination power with respect
to the existing figures for extended shower detectors. The technique shows up to be very promising and its application
may have important astrophysical prospects in different experimental environment of extended air shower study.
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1 Introduction

The aim of this paper is to introduce an event by event
separation technique based on the different topology of the
showers produced by gamma and hadron-initiated showers,
both as far as the space and time distribution in the shower
front are concerned. A detailed picture of the shower is
therefore mandatory for the method to be applied. The
main idea is to exploit at best the differences in the mul-
tifractal behaviour of the space distribution and the differ-
ences in the arrival time distribution for showers initiated
by different progenitors.

Our technique uses a multifractal-wavelet and lacunarity
based analysis similar to the one used by Rastegaarzadeh
and Samimi [1]. We improve Rastegaarzadeh and Samimi
method by introducing a lacunarity parameter on time ar-
rival of the showers and an artificial neural network that
allows better separation. The concept of lacunarity quan-
tifies the geometric arrangement of gaps in solid objects
(lacunae). It can be extended to the description of distribu-
tion of data sets including, but not restricted to, those with
fractal and multifractal distributions. We use lacunarityto
describe gaps in time arrivals of showers.

The method applies at best in the experimental framework
where a detailed picture of the shower front is given. We
have been testing it using the experimental framework of

the ARGO-YBJ detector [2]. ARGO-YBJ is a compact ar-
ray of Resistive Plate Chambers (RPCs) with a sampling
area of about 100x110m2, consisting of a central carpet
of about 5800m2 with 92% coverage, surrounded by a
guard ring with coarser sampling. Thus, in the central car-
pet surface a fully detailed map of the shower front can be
worked out, with a space resolution for multiple hit count-
ing given by 6.75x61.80cm2 (the RPCinduction strip size)
and a time resolution of the order of 1 ns in a slightly larger
unit, as wide as 8 contiguous ORed strips (55.6x61.8cm2).

2 Multiscale wavelet and fractal analysis

The wavelet transform is, by definition, the decomposition
of a function on a basis obtained by translation and dila-
tion of a particular function localized in both physical and
frequency space. A wavelet analysis of a density field as-
sociates each point with a real number which represents
the smoothed local density contrast at a given scale (see
for example Pagliaro and Becciani [3], Gambera et al [4]).
Fractal analysis, on the other hand, is concerned with the
measurement of the local smoothness of the signals [5]. A
deterministic fractal is defined using the concept of self-
similarity. The fractal dimension D plays a central role: it
is a measure of how the members are distributed in space.
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Intuitively, the larger the fractal dimension, the rougherthe
texture [6]. Self-similar multifractals are geometrical ob-
jects invariant by dilation. Multifractality is not character-
ized by a single fractal dimension, but by a function.

The large numbers of interactions in showers from the same
progenitor are self-similar. For this reason showers may
be characterized by their fractal dimension. Moreover, the
distribution of the shower particles near the core has a self-
similar character different from those far away. Different
physics is involved in production of different secondary
particles. For these reasons, extensive air showers have a
multifractal behaviour and more than one fractal dimen-
sion.

In our method, for a distribution of particles on a plane,
the number of particles inside a radius R is computed. If
a scaling law of the formN(R) ∝ RD holds and D is a
single non-integer value, the distribution has a fractal dis-
tribution with dimension D. Multifractal behaviour can be
revealed by studying the scaling laws for secondary parti-
cles at different core distances. Holschneider [7] has shown
that if a function f has scaling law with exponentD around
x0: f(R(x0, λǫ)) ∼ λDf(R(x0, ǫ)) then the wavelet trans-
form W (s, t) =

∫
g(x; s, t)f(x)dx, wheres is the single

dilation parameter (scale) andt is the translational param-
eter, has the same scaling exponent, if the waveletg has a
zero average and decays fast at infinity. Thus the local scal-
ing behaviour is represented byW (s, t) ∼ sD(t). There-
fore for any distribution functionf the slope of the plot of
logW (s, t) versuslog s will give the fractal dimension of
the distribution around pointt for the range of the scales.

3 Lacunarity

Lacunarity is the deviation of a fractal from translational
invariance and can be extended to the description of spa-
tial distribution of real data sets, including those with
multifractal distributions. Lacunarity is defined asΛ =
E( M

E(M) − 1)2 whereM is the mass of the fractal set (de-
fined as the total number of points in the image) andE(M)
is the expected value of the mass computed for the fractal.
This measures the discrepancy between the actual mass and
the expected value. Lacunarity is small when texture is fine
and large when texture is coarse. The mass of the fractal
set is related to the length byM(L) = kLD.

Among the algorithms proposed to measure lacunarity, we
adopt the gliding box method of Allain and Cloitre [8]. We
assess time pattern lacunarity by gridding each time arrival
array into squares as in McIntyre and Wiens [9]. In this
protocol, a box is superimposed on the map. The number
of full square contained inside the box is tallied. Then the
box moves one unit up. The size of the box is initially
four squares and then is enlarged adding squares until the
box size equals the length of the array. A frequency distri-
bution is then created. This frequency distribution is then
converted to a probability distribution. Lacunarity is then
computed from these probability values by determining the

variance and mean of the number of full squares per gliding
box: Λ = [(variance/mean2) + 1] and may assume any
value between1 and∞. A pattern lacunarity 1 indicates
that full squares are uniformly dispersed at a given scale.
Values6= 1 indicate non-uniformity in the distribution.

4 Simulations of extensive air showers

To test our separation technique we analysed simulated
showers initiated both by gamma-rays and protons. The
showers were simulated by means of the CORSIKA code
with QGSJET model [10], and the ARGO-G code [11] to
simulate the pattern of the shower front hit as detected in
the ARGO-YBJ detector. A detailed description of the
ARGO-YBJ detector performances is beyond our scope. A
total number of 30000 events were chosen for the analysis.
The showers have zenith angles0◦ < θ < 15◦ and primary
energies fromE ∼ 1 · 1010eV toE ∼ 1 · 1014eV .

The spatial distribution of the secondary particles at ARGO
altitude (4300m a.s.l.) is used for the analysis. The time
analysis is performed on the shower from time zero (first
detection on the carpet of a secondary particle) to time 2000
ns. The output of the simulated showers includes the effect
of the detector response as far as space and time distribu-
tion on the carpet is concerned.

5 Spatial separation technique

Our spatial separation technique uses the differences in
wavelet based multifractal behaviours of showers of dif-
ferent progenitors. These are: the mean and the standard
deviation of individual Gaussian fits to the distributions of
multifractal dimensions.

For each shower, the dependence with respect to the dis-
tance from the shower core of the fractal dimension is al-
most linear. This has a consequence: we need to specify the
mean and the standard deviation just for two different mean
distances from the core. So we choose to analyze two re-
gions: a circle of fixed radiusrC centred at the shower core
(inner ring) and a ring with fixed inner and outer radiiri
andro (outer ring). In our analysis we choose the values:
rC = 7 m, ri = 9 m, ro = 12 m. The radii have been
chosen such that on average the two rings contain about an
equal number of hits. Our shower core is computed on the
wavelet transform of the spatial map on the maximum scale
(s = 25). On that scale, in this analysis, the shower core
is found as the coordinatesxcore andycore of the maxi-
mum value of the wavelet coefficients. The multifractal be-
haviour of each individual shower is then specified by four
quantities: the mean of the Gaussian fit in the inner and the
outer ring (µI , µO) and the standard deviation in the inner
and the outer ring (σI , σO). The set of scales are powers
of two: s = 2r and the first scale always corresponds to
the size of 1 pixel. The scales may be considered as the
resolution. We choose to investigate on the scales2 to 32
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that on the ARGO-YBJ carpet correspond to physical sizes
≈ 1.2 m and≈ 20 m.

As pointed out in Section 2, if a function f has scal-
ing law with exponentD aroundx0: f(R(x0, λǫ)) ∼

λDf(R(x0, ǫ)) then the wavelet transformW (s, t) =∫
g(x; s, t)f(x)dx has the same scaling exponent, and thus

the local scaling behaviour is represented byW (s, t) ∼

sD(t). We compute therefore alog(W )/log(s) matrix for
each scales on the two regions selected (inner and outer
ring). D = log(W )/log(s) is the fractal dimension and
has a Gaussian distribution. IfµI , µO are the average val-
ues of the distribution of D in the Inner (I) and Outer (O)
regions andσI , σO their standard deviations we compute
average values ofµI , µO, σI , σO on all the scales and ob-
tain our parameters:µI , µO, σI , σO.

All these quantities strongly depend on the nature of
the progenitor. However, they show large fluctuations,
prohibiting de facto discrimination. So, to get a high-
resolution separation technique, we need at least one more
parameter and then define and train an artificial neural net-
work.

6 Separation technique on time arrivals

Our separation technique on time arrival of the shower use
the lacunarity technique in the same two regions as the spa-
tial separation: the inner and outer ring. First, we need to
compute our time array asT = Tmax − Tmin whereTmin

is the time arrival of the first secondary particle on the car-
pet and is set to0 andTmax is the time arrival of the last
secondary particle we include in our analysis. Maximum
value ofT is 2000 ns. Then we need to define the time
scale on which we compute lacunarity. This is a crucial
parameter. We call ittlac.

A box of lengthtlac is placed at the origin of the sets. The
number of occupied sites within the box (box massk) is
then determined. The box is moved one space along the
set and the mass is computed again. This process is re-
peated over the entire set, producing a frequency distribu-
tion of the box massesn(k, tlac). This frequency distribu-
tion is converted into a probability distributionQ(k, tlac)
dividing by the total number of boxesN(tlac) of sizetlac:
Q(k, tlac) = n(k, tlac)/N(tlac)

The first and second moments of the distributionZ1 andZ2

are computed:Z1(tlac) =
∑

k k · Q(k, tlac), Z2(tlac) =∑
k k

2 · Q(k, tlac). The lacunarity is now defined as:
Λ(tlac) = Z2/Z

2
1 . Lacunarity is computed both in the in-

ner and the outer ring (ΛI ,ΛO). We find that5 ns is a good
choice for thetlac parameter.

7 A standard three layer neural network

We assume therefore that the mass of the progenitor can
be estimated with the use of an artificial neural network
of seven variables. The neural network is a standard three

Nhits < Eγ > < Eh > ev(γ + h) Q
20÷ 99 0.4 TeV 0.6 TeV 4000 1.32
100÷ 299 1.0 TeV 1.5 TeV 4000 1.84
300÷ 599 2.6 TeV 4.0 TeV 4000 1.96
600÷ 999 4.5 TeV 7.2 TeV 4000 2.37
1000÷ 5000 10.1 TeV 17.2 TeV 4000 2.98

Table 1: Q values forγ/h discrimination

layer perceptron with only one output neuron (1=hadron,
0=gamma). The neural network we choose is of the feed
forward type. The input is made of the six neurons de-
scribed before: (1,2) average of the fractal dimensions on
the spatial scales in the inner and outer region:µI , µO;
(3,4) average of the standard deviation of the fractal di-
mensions on the spatial scales in the inner and outer region:
σI , σO; (5,6) lacunarity of the time arrivals arrays in the in-
ner and outer region:ΛI ,ΛO, plus, as seventh neuron, the
time array (difference between first and last hit, see Section
6): T = Tmax − Tmin.

The hidden layer is made of four neurons, while the output
vector is defined in a one dimensional space and it is trained
to be 0 for gamma initiated events and 1 for hadronic
ones. Network was implemented and optimized by us-
ing the Stuttgart Neural Network Simulator Tool (SNNS)
[12]. SNNS is a simulator for neural networks developed at
the Institute for Parallel and Distributed High Performance
Systems at the University of Stuttgart. The network was
trained by using 1000 events from indipendent samples for
each multiplicity for a total of 10000 events for each pro-
genitor.

8 Test run and results

The most important parameter in gamma/hadron discrimi-
nation is the Q (quality) factor. The Q factor is defined as
Q =

εγ√
1−εh

whereεγ is the fraction of showers induced
by photons correctly identified by the discrimination crite-
rion andεh is the fraction of showers induced by protons
correctly identified by the discrimination criterion so that
1− εh is the background contamination.

In our test run Q values from1.32 to 2.98 have been ob-
tained (see Table 1). Q values strongly depend on the num-
ber of hits. In Figures 1 to 5 we present the results of ap-
plying our method to 20000 simulated showers of two dif-
ferent primaries (10000γ and 10000 hadrons) with number
of hits on the carpet between 20 and 5000. The neural net-
work was trained on similar not overlapping sets of 2000
events for each multiplicity range on 5000 cycles. As it is
seen in the histograms, the identification is achieved with
a good resolution if a number of hits greater than 100 is
provided.

We are presently working to obtain better results in the low
energy ranges, i.e. the most populated one, as well as to
extend the analysis to inclined showers.
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Figure 1: Gamma-hadron separation for 0 to 99 hits

Figure 2: Gamma-hadron separation for 100 to 299 hits

Figure 3: Gamma-hadron separation for 300 to 599 hits

Figure 4: Gamma-hadron separation for 600 to 999 hits

9 Conclusions

A new technique for separating extensive air showers ini-
tiated by different progenitors, based on multifractal and

Figure 5: Gamma-hadron separation for 1000 to 5000 hits

lacunarity analysis, has been developed. The multifractal
behaviour and lacunarity time structure of each shower has
been represented by seven variables. Due to large shower
to shower fluctuations, the differences in any single one
of these variables have a very poor separation power [13].
So, on these seven quantities, a neural network analysis
has been performed. Network were implemented and op-
timized by using the Stuttgart Neural Network Simulator
Tool and trained by using events from indipendent samples.

It is well known that the most important parameter in
gamma/hadron discrimination is the Q (quality) factor.

Our approach gives good results, leading to an improve-
ment of the discrimination power with respect to the exist-
ing figures for extended shower detectors. The technique
shows up to be very promising and its application may have
important astrophysical prospects in different experimental
environment of extended air shower study.
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