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A multiscale method for gamma/h discrimination in extensive air showers
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Abstract: We present a new method for the identification of extensivsl@wers initiated by different primaries. The
method uses the multiscale concept and is based on the snaflysultifractal behaviour and lacunarity of secondary
particle distributions together with a properly designad &rained artificial neural network. The separation teghaiis
particularly suited for being applied when the topologytef particle distribution in the shower front is as largeltailed

as possible. Here, our method is discussed and applied tooh &gly simulated vertical showers in the experimental
framework of ARGO-YBJ, taking advantage of both the spacktame distribution of the detected secondary particles in
the shower front, to obtain hadron to gamma primary semarati EAS analysis. We show that the presented approach
gives very good results, leading, in the 1-10 Tev energyaatggan improvement of the discrimination power with respec
to the existing figures for extended shower detectors. Ttlntque shows up to be very promising and its application
may have important astrophysical prospects in differepegmental environment of extended air shower study.
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1 Introduction the ARGO-YBJ detector [2]. ARGO-YBJ is a compact ar-
ray of Resistive Plate Chambers (RPCs) with a sampling
The aim of this paper is to introduce an event by evertirea of about 100x116:%, consisting of a central carpet
separation technique based on the different topology of tié about 5800m* with 92% coverage, surrounded by a
showers produced by gamma and hadron-initiated showegsjard ring with coarser sampling. Thus, in the central car-
both as far as the space and time distribution in the showet surface a fully detailed map of the shower front can be
front are concerned. A detailed picture of the shower iworked out, with a space resolution for multiple hit count-
therefore mandatory for the method to be applied. Thiag given by 6.75x61.88m? (the RPCinduction strip size)
main idea is to exploit at best the differences in the muland a time resolution of the order of 1 ns in a slightly larger
tifractal behaviour of the space distribution and the diffe unit, as wide as 8 contiguous ORed strips (55.6x61:8).
ences in the arrival time distribution for showers initthte
by different progenitors.

2
Our technique uses a multifractal-wavelet and lacunarity
based analysis similar to the one used by Rastegaarzadlfhh

and Samimi [1]. We improve Rastegaarzadeh and Samin e wavelet transform is, by definition, the decomposition

: . . . Of a function on a basis obtained by translation and dila-
method by introducing a lacunarity parameter on time ar:

: o ion of a particular function localized in both physical and
rival of the showers and an artificial neural network tha requency space. A wavelet analysis of a density field as-
allows better separation. The concept of lacunarity quarl Sotes each péint with a real number which represents
tifies the geometric arrangement of gaps in solid objec e smoothed local density contrast at a given scale (see
(lacunae). It can be extended to the description of distribtf,or example Pagliaro and Becciani [3], Gambera et al [4])
tion of data sets including, but not restricted to, thoselnwitFractal analysis, on the other hand i’s concerned with th-e
fractal and multifractal distributions. We use lacunatay measurement of, the local smoothne:ss of the signals [5]. A
describe gaps in time arivals of showers. deterministic fractal is defined using the concept of self-
The method applies at best in the experimental framewogmi|arity. The fractal dimension D plays a central role: it

where a detailed picture of the shower front is given. Wes 3 measure of how the members are distributed in space.
have been testing it using the experimental framework of

Multiscale wavelet and fractal analysis
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Intuitively, the larger the fractal dimension, the rougtier  variance and mean of the number of full squares per gliding
texture [6]. Self-similar multifractals are geometricél-o box: A = [(variance/mean?) + 1] and may assume any
jects invariant by dilation. Multifractality is not chartee- value betweer andoco. A pattern lacunarity 1 indicates
ized by a single fractal dimension, but by a function. that full squares are uniformly dispersed at a given scale.

The large numbers of interactions in showers from the san¥@lues7 1 indicate non-uniformity in the distribution.
progenitor are self-similar. For this reason showers may

be characterized by their fractal dimension. Moreover, th
distribution of the shower particles near the core has a sel
similar character different from those far away. Differentl_

physics is involved in production of different secondary 0 test our separation technique we analysed simulated

articles. For these reasons, extensive air showers havgr‘g)wers initiateq both by gamma-rays and protons. The
P showers were simulated by means of the CORSIKA code

;?grlltffractal behaviour and more than one fractal d|menWith QGSJET model [10], and the ARGO-G code [11] to
o . simulate the pattern of the shower front hit as detected in
In our method, for a distribution of particles on a plane;,e ARGO-YBJ detector. A detailed description of the
the number of particles inside a radius R is computed. KpG0-yBJ detector performances is beyond our scope. A
a scaling law of the formV(R) oc R” holds and D is & tqta] number of 30000 events were chosen for the analysis.

single non-integer value, the distribution has a fractat di 1o showers have zenith anglEs< 6 < 15° and primary
tribution with dimension D. Multifractal behaviour can beenergies fronE ~ 1-100V 0 E ~ 1 - 10%eV.

revealed by studying the scaling laws for secondary par\;j; e .
cles at different core distances. Holschneider [7] has sho he spatial distribution of the secondary particles at ARGO

that if a function f has scaling law with exponentaround aIt|tud¢ @.3007” a.s.l) is used for the analygls. The “”.‘e
20 f(R(zo0, \e)) ~ AP f(R(x0, €)) then the wavelet trans- analysis is performed on the shower from time zero (first

form W (s, t) = [ g(z; s,1)f(z)dz, wheres is the single detection onthe carpe‘gofasecondary particle) totime 2000
dilation parameter (scale) ands the translational param- "> The output of the simulated showers mcludgs the.eff.ect
eter, has the same scaling exponent, if the waveles a qf the detector response as far as space and time distribu-
zero average and decays fast at infinity. Thus the local scdenon the carpet is concerned.

ing behaviour is represented B (s, t) ~ s”(*). There-

fore for any distribution functiorf the slope of the plot of g Spatial separation technique

log W (s, t) versuslog s will give the fractal dimension of
the distribution around poiritfor the range of the scale

Simulations of extensive air showers

Our spatial separation technique uses the differences in
wavelet based multifractal behaviours of showers of dif-
3 Lacunarity ferent progenitors. These are: the mean and the standard
deviation of individual Gaussian fits to the distributiorfs o

Lacunarity is the deviation of a fractal from translationarnumfralCtaI dimensions.

invariance and can be extended to the description of spgor each shower, the dependence with respect to the dis-
tial distribution of real data sets, including those withtance from the shower core of the fractal dimension is al-
multifractal distributions. Lacunarity is defined as = mostlinear. This has a consequence: we need to specify the
E(-M4 1)2 whereM is the mass of the fractal set (de-mean and the standard deviation just for two different mean

E(M) .
fined as the total number of points in the image) &Hd/) distances from the core. So we choose to analyze two re-

is the expected value of the mass computed for the fract@iOns: a circle of fixed radiusc centred at the shower core
This measures the discrepancy between the actual mass 4R§€' 1ing) and a ring with fixed inner and outer radii _
the expected value. Lacunarity is small when texture is fi@d7o (Outer ring). In our analysis we choose the values:

and large when texture is coarse. The mass of the fractal = 7 M7 = 9 m, 7, = 12 m. The radii have been
set s related to the length by (L) = kLP. chosen such that on average the two rings contain about an

equal number of hits. Our shower core is computed on the

Among the glgonthms proposed to measure Igcunanty, Favelet transform of the spatial map on the maximum scale
adopt the gliding box method of Allain and Cloitre [8]. We s = 2%). On that scale, in this analysis, the shower core

assess time pattern lacunarity by gridding each time arriv found as the coordinategore andycore of the maxi-

arra:y |n|to sguares as in Mclnnge a?ﬁ Wiens [ng In tht'ﬁ“num value of the wavelet coefficients. The multifractal be-
p][? ?lco » 8 DOX lstsyp%rl_mpgseth ort1) € n;al? d _lefhnun:hﬁgviour of each individual shower is then specified by four
of full square contain€d inside the box IS taflied. Tnen ‘auantities: the mean of the Gaussian fit in the inner and the

box moves one unit up. The size of the box is initially ter ring {17, 1) and the standard deviation in the inner

u
four squares and then is enlarged adding squares until t ;
box size equals the length of the array. A frequency distnB-1ﬁ0| the outer ringd;, 0o). The set of scales are powers

o . L of two: s = 2" and the first scale always corresponds to
bution is then created.. .Thls. frequgncy dlstnbut!on. IS theﬂwe size of 1 pixel. The scalemay be considered as the
converted to a probability distribution. Lacunarity is tthe

- o resolution. We choose to investigate on the scalas32
computed from these probability values by determining the 9
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that on the ARGO-YBJ carpet correspond to physical sizesNhits <E,> <E,> ey+h) @
~ 1.2 mand= 20 m. 2099 0.4Tev 0.6TeV 4000 1.32

As pointed out in Section 2, if a function f has scal- 100 +299 1.0Tev  1.5TeV 4000 1.84
ing law with exponentD aroundzo: f(R(zo,Xe)) ~ 300599 2.6Tev. 4.0Tev ~ 4000  1.96
AP f(R(x0,€)) then the wavelet transfornil(s,t) = 600999 45Tev  7.2Tev ~ 4000  2.37
[ g(x; s,t) f(z)dx has the same scaling exponent, and thus!000 = 5000 | 10.1TeV 17.2Tev 4000  2.98
the local scaling behaviour is representedWy(s, t) ~
sP®) . We compute thereforelag(W)/log(s) matrix for
each scale on the two regions selected (inner and outer
ring). D = log(W)/log(s) is the fractal dimension and

has a Gaussian distribution. /i, uo are the average val- |ayer perceptron with only one output neuron (1=hadron,
ues of the distribution of D in the Inner (I) and Outer (O)o=gamma). The neural network we choose is of the feed
regions andr;, oo their standard deviations we computeforward type. The input is made of the six neurons de-
average values qiy, 1.0, 01,00 on all the scales and ob- scribed before: (1,2) average of the fractal dimensions on
tain our parametergi;, fip, 01, 00- the spatial scales in the inner and outer regign; 7i,;

All these quantities strongly depend on the nature of3,4) average of the standard deviation of the fractal di-
the progenitor. However, they show large fluctuationgnensions on the spatial scales in the inner and outer region:
prohibiting de facto discrimination. So, to get a high-c,70; (5,6) lacunarity of the time arrivals arrays in the in-
resolution separation technique, we need at least one marer and outer regionA;, Ao, plus, as seventh neuron, the
parameter and then define and train an artificial neural ndtme array (difference between first and last hit, see Sectio
work. 6): T = Trnaz — Tmin-

The hidden layer is made of four neurons, while the output
vector is defined in a one dimensional space and it is trained
to be 0 for gamma initiated events and 1 for hadronic
) , ) , ones. Network was implemented and optimized by us-
Our separation technique on time arrival of the shower uqﬁg the Stuttgart Neural Network Simulator Tool (SNNS)
the Iacunarity technique in the same t_WO fegions asthe s 2]. SNNS is a simulator for neural networks developed at
tial separatlon: the inner and outer ring. First, we need e Institute for Parallel and Distributed High Performanc
compute our time array éB = Tmaz = Timin vyhereTmm Systems at the University of Stuttgart. The network was
is the time arrival of the first secondary particle on the cakined by using 1000 events from indipendent samples for

petand is set t0 andT},,q, is the time arrival of the last o5 0 myitiplicity for a total of 10000 events for each pro-
secondary particle we include in our analysis. Maximu enitor

value of 7" is 2000 ns. Then we need to define the tim

scale on which we compute lacunarity. This is a crucial

parameter. We call it;,... 8 Test run and results

A box of lengtht;,. is placed at the origin of the sets. The

number of occupied sites within the box (box m@3ss The most important parameter in gamma/hadron discrimi-
then determined. The box is moved one space along thation is the Q (quality) factor. The Q factor is defined as
set and the mass is computed again. This process is @-= ——= ) wheree,, is the fraction of showers induced
peated over the entire set, producing a frequency distriby photons correctly identified by the discrimination crite
tion of the box masses(k, ti,c). This frequency distribu- rion andey, is the fraction of showers induced by protons
tion is converted into a probability distributiaB(k, t;..)  correctly identified by the discrimination criterion so tha
dividing by the total number of box€$ (¢;..) of sizet;,.: 1 — ¢, is the background contamination.

Table 1: Q values fofy/h discrimination

6 Separation techniqueon timearrivals

Q(K, tiac) = n(k, tiac) /N (tiac) In our test run Q values from.32 to 2.98 have been ob-
The first and second moments of the distributiirandZ,  tained (see Table 1). Q values strongly depend on the num-
are computedZ (tiac) = > k - Q(k,tiac), Z2(tiae) =  ber of hits. In Figures 1 to 5 we present the results of ap-

>ork? - Q(k,tiee). The lacunarity is now defined as: plying our method to 20000 simulated showers of two dif-
A(tiae) = Z2/Z3. Lacunarity is computed both in the in- ferent primaries (10009 and 10000 hadrons) with number
ner and the outer ring\(z, Ap). We find thats nsis a good  of hits on the carpet between 20 and 5000. The neural net-
choice for thet;,. parameter. work was trained on similar not overlapping sets of 2000
events for each multiplicity range on 5000 cycles. As itis
seen in the histograms, the identification is achieved with
a good resolution if a number of hits greater than 100 is

provided.
We assume therefore that the mass of the progenitor cgn . . .
; . e e are presently working to obtain better results in the low
be estimated with the use of an artificial neural network 4
energy ranges, i.e. the most populated one, as well as to

of seven variables. The neural network is a standard three ) o
éxtend the analysis to inclined showers.

7 A standard three layer neural network
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Figure 2: Gamma-hadron separation for 100 to 299 hits

ANN Output

300 < Nhit < 599

00 4 [E gamm:

500
500 -
g 3
§ 400
b E
300 4
200

100

0 T

ij‘ﬁg i i B ’

0.4 02

Figure 3: Gamma-hadron separation for 300 to 599 hits
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Figure 4: Gamma-hadron separation for 600 to 999 hits
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lacunarity analysis, has been developed. The multifractal
behaviour and lacunarity time structure of each shower has
been represented by seven variables. Due to large shower
to shower fluctuations, the differences in any single one
of these variables have a very poor separation power [13].
So, on these seven quantities, a neural network analysis
has been performed. Network were implemented and op-
timized by using the Stuttgart Neural Network Simulator
Tool and trained by using events from indipendent samples.

It is well known that the most important parameter in
gamma/hadron discrimination is the Q (quality) factor.

Our approach gives good results, leading to an improve-
ment of the discrimination power with respect to the exist-
ing figures for extended shower detectors. The technique
shows up to be very promising and its application may have
important astrophysical prospects in different experitaen
environment of extended air shower study.
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